BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 12617979)

  • 1. Immunohistochemical assessment of mesotelencephalic dopamine activity during the acquisition and expression of Pavlovian versus instrumental behaviours.
    Phillips GD; Setzu E; Vugler A; Hitchcott PK
    Neuroscience; 2003; 117(3):755-67. PubMed ID: 12617979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Activation of the Basolateral Amygdala Promotes Both Appetitive Conditioning and the Instrumental Pursuit of Reward Cues.
    Servonnet A; Hernandez G; El Hage C; Rompré PP; Samaha AN
    J Neurosci; 2020 Feb; 40(8):1732-1743. PubMed ID: 31953370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticostriatal Suppression of Appetitive Pavlovian Conditioned Responding.
    Villaruel FR; Martins M; Chaudhri N
    J Neurosci; 2022 Feb; 42(5):834-849. PubMed ID: 34880119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlates of Pavlovian-to-instrumental transfer in the nucleus accumbens shell are selectively potentiated following cocaine self-administration.
    Saddoris MP; Stamatakis A; Carelli RM
    Eur J Neurosci; 2011 Jun; 33(12):2274-87. PubMed ID: 21507084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The basolateral amygdala and nucleus accumbens core mediate dissociable aspects of drug memory reconsolidation.
    Théberge FR; Milton AL; Belin D; Lee JL; Everitt BJ
    Learn Mem; 2010 Sep; 17(9):444-53. PubMed ID: 20802017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulus-specific and differential distribution of activated extracellular signal-regulated kinase in the nucleus accumbens core and shell during Pavlovian-instrumental transfer.
    Remus ML; Thiels E
    Brain Struct Funct; 2013 Jul; 218(4):913-27. PubMed ID: 22763576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time dopamine efflux in the nucleus accumbens core during Pavlovian conditioning.
    Sunsay C; Rebec GV
    Behav Neurosci; 2008 Apr; 122(2):358-67. PubMed ID: 18410174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing roles of prelimbic and infralimbic dopamine in conditioned cue and place preference.
    Hayen A; Meese-Tamuri S; Gates A; Ito R
    Psychopharmacology (Berl); 2014 Jun; 231(12):2483-92. PubMed ID: 24429871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual differences in dopamine efflux in nucleus accumbens shell and core during instrumental learning.
    Cheng J; Feenstra MG
    Learn Mem; 2006; 13(2):168-77. PubMed ID: 16585792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociable hippocampal and amygdalar D1-like receptor contribution to discriminated Pavlovian conditioned approach learning.
    Andrzejewski ME; Ryals C
    Behav Brain Res; 2016 Feb; 299():111-21. PubMed ID: 26632336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation by central and basolateral amygdalar nuclei of dopaminergic correlates of feeding to satiety in the rat nucleus accumbens and medial prefrontal cortex.
    Ahn S; Phillips AG
    J Neurosci; 2002 Dec; 22(24):10958-65. PubMed ID: 12486191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal association activates projections from the perirhinal cortex and ventral CA1 to the prelimbic cortex and from the prelimbic cortex to the basolateral amygdala.
    Santos TB; Kramer-Soares JC; Coelho CAO; Oliveira MGM
    Cereb Cortex; 2023 Dec; 33(24):11456-11470. PubMed ID: 37823340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation.
    Faure A; Haberland U; Condé F; El Massioui N
    J Neurosci; 2005 Mar; 25(11):2771-80. PubMed ID: 15772337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic activation of amygdala projections to nucleus accumbens can arrest conditioned and unconditioned alcohol consummatory behavior.
    Millan EZ; Kim HA; Janak PH
    Neuroscience; 2017 Sep; 360():106-117. PubMed ID: 28757250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential representation of Pavlovian-instrumental transfer by prefrontal cortex subregions and striatum.
    Homayoun H; Moghaddam B
    Eur J Neurosci; 2009 Apr; 29(7):1461-76. PubMed ID: 19309320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum.
    Stefani MR; Moghaddam B
    J Neurosci; 2006 Aug; 26(34):8810-8. PubMed ID: 16928870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling individual differences in the form of Pavlovian conditioned approach responses: a dual learning systems approach with factored representations.
    Lesaint F; Sigaud O; Flagel SB; Robinson TE; Khamassi M
    PLoS Comput Biol; 2014 Feb; 10(2):e1003466. PubMed ID: 24550719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmenting glutamatergic, but not dopaminergic, activity in the nucleus accumbens shell disrupts responding to a discrete alcohol cue in an alcohol context.
    Valyear MD; Brown A; Deyab G; Villaruel FR; Lahlou S; Caporicci-Dinucci N; Chaudhri N
    Eur J Neurosci; 2024 Apr; 59(7):1500-1518. PubMed ID: 38185906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sidman instrumental avoidance initially depends on lateral and basal amygdala and is constrained by central amygdala-mediated Pavlovian processes.
    Lázaro-Muñoz G; LeDoux JE; Cain CK
    Biol Psychiatry; 2010 Jun; 67(12):1120-7. PubMed ID: 20110085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral habenula lesions impair the association of a conditioned stimulus with the absence of an unconditioned stimulus: Retardation task.
    Jin IB; Jeon YJ; Cho J; Han JS
    Behav Brain Res; 2023 Apr; 444():114375. PubMed ID: 36863460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.