These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 12618037)

  • 1. Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae.
    Taherzadeh MJ; Fox M; Hjorth H; Edebo L
    Bioresour Technol; 2003 Jul; 88(3):167-77. PubMed ID: 12618037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus.
    Sues A; Millati R; Edebo L; Taherzadeh MJ
    FEMS Yeast Res; 2005 Apr; 5(6-7):669-76. PubMed ID: 15780667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor.
    Helle SS; Murray A; Lam J; Cameron DR; Duff SJ
    Bioresour Technol; 2004 Apr; 92(2):163-71. PubMed ID: 14693449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor.
    Satari B; Karimi K; Taherzadeh MJ; Zamani A
    Int J Mol Sci; 2016 Feb; 17(3):302. PubMed ID: 26927089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of ethanol from pulp mill hardwood and softwood spent sulfite liquors by genetically engineered E. coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1993; 39-40():667-85. PubMed ID: 8323269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-fermentation of hexose and pentose sugars in a spent sulfite liquor matrix with genetically modified Saccharomyces cerevisiae.
    Novy V; Krahulec S; Longus K; Klimacek M; Nidetzky B
    Bioresour Technol; 2013 Feb; 130():439-48. PubMed ID: 23313691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor.
    Rodrigues RC; Lu C; Lin B; Jeffries TW
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic acid production from xylose by the fungus Rhizopus oryzae.
    Maas RH; Bakker RR; Eggink G; Weusthuis RA
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Glucose Concentration on Ethanol Fermentation of White-Rot Fungus Phanerochaete sordida YK-624 Under Aerobic Conditions.
    Mori T; Kondo O; Kawagishi H; Hirai H
    Curr Microbiol; 2019 Mar; 76(3):263-269. PubMed ID: 30607505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.
    Harner NK; Bajwa PK; Habash MB; Trevors JT; Austin GD; Lee H
    Antonie Van Leeuwenhoek; 2014 Jan; 105(1):29-43. PubMed ID: 24122119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor.
    Tay A; Yang ST
    Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis.
    Thongchul N; Navankasattusas S; Yang ST
    Bioprocess Biosyst Eng; 2010 Mar; 33(3):407-16. PubMed ID: 19533174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor.
    Bajwa PK; Shireen T; D'Aoust F; Pinel D; Martin VJ; Trevors JT; Lee H
    Biotechnol Bioeng; 2009 Dec; 104(5):892-900. PubMed ID: 19557723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentation of hexoses and pentoses from sugarcane bagasse hydrolysates into ethanol by Spathaspora hagerdaliae.
    Rech FR; Fontana RC; Rosa CA; Camassola M; Ayub MAZ; Dillon AJP
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):83-92. PubMed ID: 30264227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose.
    Liu Y; Liao W; Chen S
    J Appl Microbiol; 2008 Nov; 105(5):1521-8. PubMed ID: 19146489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.
    Thitiprasert S; Sooksai S; Thongchul N
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1305-22. PubMed ID: 21416338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on L+-lactic acid production.
    Maas RH; Springer J; Eggink G; Weusthuis RA
    J Ind Microbiol Biotechnol; 2008 Jun; 35(6):569-78. PubMed ID: 18247072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of industrial yeast strains for fermentation of spent sulphite pulping liquor fortified with wood hydrolysate.
    Smith MT; Cameron DR; Duff SJ
    J Ind Microbiol Biotechnol; 1997 Jan; 18(1):18-21. PubMed ID: 9079283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L (+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol.
    Vodnar DC; Dulf FV; Pop OL; Socaciu C
    Microb Cell Fact; 2013 Oct; 12():92. PubMed ID: 24112554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.