These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12618099)

  • 1. The primary electroviscous effect, free solution electrophoretic mobility, and diffusion of dilute prolate ellipsoid particles (minor axis = 3 nm) in monovalent salt solution.
    Allison S; Rasmusson M; Wall S
    J Colloid Interface Sci; 2003 Feb; 258(2):289-97. PubMed ID: 12618099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophoretic mobility and primary electroviscous effect of dilute "hard" prolate ellipsoids.
    Allison S
    J Colloid Interface Sci; 2005 Feb; 282(1):231-7. PubMed ID: 15576103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general gel layer model for the transport of colloids and macroions in dilute solution.
    Allison S; Wall S; Rasmusson M
    J Colloid Interface Sci; 2003 Jul; 263(1):84-98. PubMed ID: 12804889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boundary element modeling of biomolecular transport.
    Allison SA
    Biophys Chem; 2001 Nov; 93(2-3):197-213. PubMed ID: 11804726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The primary electroviscous effect of prolate silica sols.
    Rasmusson M; Allison S; Wall S
    J Colloid Interface Sci; 2003 Apr; 260(2):423-30. PubMed ID: 12686195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic modeling of metal oxides.
    Allison S
    J Colloid Interface Sci; 2009 Apr; 332(1):1-10. PubMed ID: 19101679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroviscous effect for a confined nanosphere in solution.
    Behjatian A; Bespalova M; Karedla N; Krishnan M
    Phys Rev E; 2020 Oct; 102(4-1):042607. PubMed ID: 33212723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The length dependence of translational diffusion, free solution electrophoretic mobility, and electrophoretic tether force of rigid rod-like model duplex DNA.
    Allison S; Chen C; Stigter D
    Biophys J; 2001 Nov; 81(5):2558-68. PubMed ID: 11606270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroviscous sphere-wall interactions.
    Tabatabaei SM; van de Ven TG; Rey AD
    J Colloid Interface Sci; 2006 Sep; 301(1):291-301. PubMed ID: 16765371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing ion relaxation in the transport of short DNA fragments.
    Allison SA; Wang H; Laue TM; Wilson TJ; Wooll JO
    Biophys J; 1999 May; 76(5):2488-501. PubMed ID: 10233066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic viscosity of colloidal silica suspensions at low and high volume fractions.
    Samavat S; Carrique F; Ruiz-Reina E; Zhang W; Williams PM
    J Colloid Interface Sci; 2019 Mar; 537():640-651. PubMed ID: 30476868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle/wall electroviscous effects at the micron scale: comparison between experiments, analytical and numerical models.
    Hernández Meza JM; Vélez-Cordero JR; Ramírez Saito A; Aranda-Espinoza S; Arauz-Lara JL; Yáñez Soto B
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34818642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary electroviscous effect in a suspension of charged porous spheres.
    Natraj V; Chen SB
    J Colloid Interface Sci; 2002 Jul; 251(1):200-7. PubMed ID: 16290719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of double-layer polarization and electroosmotic flow on the electrophoresis of an ellipsoid in a spherical cavity.
    Hsu JP; Chen ZS
    J Phys Chem B; 2008 Sep; 112(36):11270-7. PubMed ID: 18707074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroviscous cylinder-wall interactions.
    Tabatabaei SM; van de Ven TG; Rey AD
    J Colloid Interface Sci; 2006 Mar; 295(2):504-19. PubMed ID: 16376362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the shape and size of myosin subfragment 1 using small-angle X-ray scattering.
    Kretzschmar KM; Mendelson RA; Morales MF
    Biochemistry; 1978 Jun; 17(12):2314-8. PubMed ID: 678510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels.
    Sen T; Barisik M
    Langmuir; 2020 Aug; 36(31):9191-9203. PubMed ID: 32635731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the electrophoresis of peptides and proteins: improvements in the "bead method" to include ion relaxation and "finite size effects".
    Xin Y; Hess R; Ho N; Allison S
    J Phys Chem B; 2006 Dec; 110(49):25033-44. PubMed ID: 17149927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Measurements of Electroviscous Phenomena in Nafion Membranes.
    Østedgaard-Munck DN; Catalano J; Bentien A
    Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33113765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DC electrophoresis and viscosity of realistic salt-free concentrated suspensions: non-equilibrium dissociation-association processes.
    Ruiz-Reina E; Carrique F; Lechuga L
    J Colloid Interface Sci; 2014 Mar; 417():60-5. PubMed ID: 24407659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.