BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 12618134)

  • 1. Temporal restriction of migratory and lineage potential in rhombomere 1 and 2 neural crest.
    McKeown SJ; Newgreen DF; Farlie PG
    Dev Biol; 2003 Mar; 255(1):62-76. PubMed ID: 12618134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of the melanogenic potential of migrating neural crest-derived cells by the branchial arches.
    Jacobs-Cohen RJ; Wade PR; Gershon MD
    Anat Rec; 2002 Sep; 268(1):16-26. PubMed ID: 12209561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches.
    Kulesa PM; Fraser SE
    Development; 2000 Mar; 127(6):1161-72. PubMed ID: 10683170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graded potential of neural crest to form cornea, sensory neurons and cartilage along the rostrocaudal axis.
    Lwigale PY; Conrad GW; Bronner-Fraser M
    Development; 2004 May; 131(9):1979-91. PubMed ID: 15056619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways.
    Trainor PA; Sobieszczuk D; Wilkinson D; Krumlauf R
    Development; 2002 Jan; 129(2):433-42. PubMed ID: 11807035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pluripotent and developmentally restricted neural-crest-derived cells in posterior visceral arches.
    Ito K; Sieber-Blum M
    Dev Biol; 1993 Mar; 156(1):191-200. PubMed ID: 7680628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches.
    Trainor PA; Tam PP
    Development; 1995 Aug; 121(8):2569-82. PubMed ID: 7671820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.
    Bhattacherjee V; Mukhopadhyay P; Singh S; Johnson C; Philipose JT; Warner CP; Greene RM; Pisano MM
    Differentiation; 2007 Jun; 75(5):463-77. PubMed ID: 17286603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo.
    Lumsden A; Sprawson N; Graham A
    Development; 1991 Dec; 113(4):1281-91. PubMed ID: 1811942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinoic acid stage-dependently alters the migration pattern and identity of hindbrain neural crest cells.
    Lee YM; Osumi-Yamashita N; Ninomiya Y; Moon CK; Eriksson U; Eto K
    Development; 1995 Mar; 121(3):825-37. PubMed ID: 7720586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating patterns of cell surface properties and neural crest cell migration during segmentation of the chick hindbrain.
    Lumsden A; Guthrie S
    Dev Suppl; 1991; Suppl 2():9-15. PubMed ID: 1842360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered neuronal lineages in the facial ganglia of Hoxa2 mutant mice.
    Yang X; Zhou Y; Barcarse EA; O'Gorman S
    Dev Biol; 2008 Feb; 314(1):171-88. PubMed ID: 18164701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between spatially restricted Krox-20 gene expression in branchial neural crest and segmentation in the chick embryo hindbrain.
    Nieto MA; Sechrist J; Wilkinson DG; Bronner-Fraser M
    EMBO J; 1995 Apr; 14(8):1697-710. PubMed ID: 7537662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl.
    Cerny R; Meulemans D; Berger J; Wilsch-Bräuninger M; Kurth T; Bronner-Fraser M; Epperlein HH
    Dev Biol; 2004 Feb; 266(2):252-69. PubMed ID: 14738875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The emergence of ectomesenchyme.
    Blentic A; Tandon P; Payton S; Walshe J; Carney T; Kelsh RN; Mason I; Graham A
    Dev Dyn; 2008 Mar; 237(3):592-601. PubMed ID: 18224711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Involvement of tissue interaction between cranial neural crest cells, their pathways lateral to the midbrain hindbrain border and the buccopharyngeal membrane in Meckel's cartilage formation in avian embryos].
    Imai H
    Kokubyo Gakkai Zasshi; 2012 Mar; 79(1):15-25. PubMed ID: 22568078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dorsal hindbrain ablation results in rerouting of neural crest migration and changes in gene expression, but normal hyoid development.
    Saldivar JR; Sechrist JW; Krull CE; Ruffins S; Bronner-Fraser M
    Development; 1997 Jul; 124(14):2729-39. PubMed ID: 9226444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues.
    Noden DM
    Dev Biol; 1983 Mar; 96(1):144-65. PubMed ID: 6825950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo.
    Schilling TF; Kimmel CB
    Development; 1994 Mar; 120(3):483-94. PubMed ID: 8162849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of cranial neural crest migratory pathways in axolotl using cell markers and transplantation.
    Epperlein H; Meulemans D; Bronner-Fraser M; Steinbeisser H; Selleck MA
    Development; 2000 Jun; 127(12):2751-61. PubMed ID: 10821772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.