BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 12618319)

  • 1. Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit.
    Rozengurt N; Lopez I; Chiu CS; Kofuji P; Lester HA; Neusch C
    Hear Res; 2003 Mar; 177(1-2):71-80. PubMed ID: 12618319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of an inwardly rectifying K(+) channel (Kir4.1) in the inner ear and hearing loss.
    Chen J; Zhao HB
    Neuroscience; 2014 Apr; 265():137-46. PubMed ID: 24480364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inwardly rectifying potassium channel Kir4.1 is localized at the calyx endings of vestibular afferents.
    Udagawa T; Tatsumi N; Tachibana T; Negishi Y; Saijo H; Kobayashi T; Yaguchi Y; Kojima H; Moriyama H; Okabe M
    Neuroscience; 2012 Jul; 215():209-16. PubMed ID: 22546335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing.
    Cazals Y; Bévengut M; Zanella S; Brocard F; Barhanin J; Gestreau C
    Nat Commun; 2015 Nov; 6():8780. PubMed ID: 26549439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological alterations in the inner ear of the arylsulfatase A-deficient mouse.
    Coenen R; Gieselmann V; Lüllmann-Rauch R
    Acta Neuropathol; 2001 May; 101(5):491-8. PubMed ID: 11484821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial dysfunction disrupts trafficking of Kir4.1 in spiral ganglion satellite cells.
    Zou J; Zhang Y; Yin S; Wu H; Pyykkö I
    J Neurosci Res; 2009 Jan; 87(1):141-9. PubMed ID: 18752300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation.
    Nadol JB
    Otolaryngol Head Neck Surg; 1997 Sep; 117(3 Pt 1):220-8. PubMed ID: 9334769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [EAST/SeSAME syndrome and functional expression of inward rectifier potassium channel Kir4.1 in the inner ear].
    Chen J; Zhao H
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2015 Jul; 29(14):1318-22. PubMed ID: 26672256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential.
    Hibino H; Horio Y; Inanobe A; Doi K; Ito M; Yamada M; Gotow T; Uchiyama Y; Kawamura M; Kubo T; Kurachi Y
    J Neurosci; 1997 Jun; 17(12):4711-21. PubMed ID: 9169531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental expression and localization of KCNJ10 K+ channels in the guinea pig inner ear.
    Jin Z; Wei D; Järlebark L
    Neuroreport; 2006 Apr; 17(5):475-9. PubMed ID: 16543810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia.
    Tang X; Schmidt TM; Perez-Leighton CE; Kofuji P
    Neuroscience; 2010 Mar; 166(2):397-407. PubMed ID: 20074622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of an inwardly rectifying K(+) channel, Kir4.1, in satellite cells of rat cochlear ganglia.
    Hibino H; Horio Y; Fujita A; Inanobe A; Doi K; Gotow T; Uchiyama Y; Kubo T; Kurachi Y
    Am J Physiol; 1999 Oct; 277(4):C638-44. PubMed ID: 10516093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential.
    Hibino H; Higashi-Shingai K; Fujita A; Iwai K; Ishii M; Kurachi Y
    Eur J Neurosci; 2004 Jan; 19(1):76-84. PubMed ID: 14750965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear.
    Takumida M; Anniko M
    Acta Otolaryngol; 2010 Feb; 130(2):196-203. PubMed ID: 20095091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear morphology in the developing inner ear of the porcine model of spontaneous deafness.
    Chen W; Hao QQ; Ren LL; Ren W; Lin HS; Guo WW; Yang SM
    BMC Neurosci; 2018 May; 19(1):28. PubMed ID: 29716524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenic Tg(Kcnj10-ZsGreen) fluorescent reporter mice allow visualization of intermediate cells in the stria vascularis.
    Strepay D; Olszewski RT; Nixon S; Korrapati S; Adadey S; Griffith AJ; Su Y; Liu J; Vishwasrao H; Gu S; Saunders T; Roux I; Hoa M
    Sci Rep; 2024 Feb; 14(1):3038. PubMed ID: 38321040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea.
    Liu T; Li G; Noble KV; Li Y; Barth JL; Schulte BA; Lang H
    Neurobiol Aging; 2019 Aug; 80():210-222. PubMed ID: 31220650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of beta-tubulin in guinea pig inner ear.
    Du X; Yoo T; Mora R
    ORL J Otorhinolaryngol Relat Spec; 2003; 65(1):7-16. PubMed ID: 12624500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal loss of K+ transport proteins in the developing cochlear lateral wall of guinea pigs with hereditary deafness.
    Jin Z; Ulfendahl M; Järlebark L
    Eur J Neurosci; 2008 Jan; 27(1):145-54. PubMed ID: 18093167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model.
    Wangemann P; Nakaya K; Wu T; Maganti RJ; Itza EM; Sanneman JD; Harbidge DG; Billings S; Marcus DC
    Am J Physiol Renal Physiol; 2007 May; 292(5):F1345-53. PubMed ID: 17299139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.