These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12618352)

  • 1. Identification of active thoracic spinal segments responsible for tonic and bursting sympathetic discharge in neonatal rats.
    Su CK; Phoon SL; Yen CT
    Brain Res; 2003 Mar; 966(2):288-99. PubMed ID: 12618352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraspinal amino acid neurotransmitter activities are involved in the generation of rhythmic sympathetic nerve discharge in newborn rat spinal cord.
    Su CK
    Brain Res; 2001 Jun; 904(1):112-25. PubMed ID: 11516417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1997 Mar; 77(3):1155-70. PubMed ID: 9084588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous activation of nicotinic receptors underlies sympathetic tone generation in neonatal rat spinal cord in vitro.
    Chen HK; Su CK
    Neuropharmacology; 2006 Dec; 51(7-8):1120-8. PubMed ID: 16904709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of synchronous sympathetic firing behaviors by endogenous GABA(A) and glycine receptor-mediated activities in the neonatal rat spinal cord in vitro.
    Su CK
    Neuroscience; 2016 Jan; 312():227-46. PubMed ID: 26598070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of rhythmogenic networks responsible for spontaneous bursts induced by strychnine and bicuculline in the rat isolated spinal cord.
    Bracci E; Ballerini L; Nistri A
    J Neurosci; 1996 Nov; 16(21):7063-76. PubMed ID: 8824342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of sympathetic, respiratory and somatomotor outflow by an intraspinal pattern generator.
    Goodchild AK; van Deurzen BT; Hildreth CM; Pilowsky PM
    Clin Exp Pharmacol Physiol; 2008 Apr; 35(4):447-53. PubMed ID: 18307739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhythmic sympathetic nerve discharges in an in vitro neonatal rat brain stem-spinal cord preparation.
    Su CK
    J Appl Physiol (1985); 1999 Sep; 87(3):1066-74. PubMed ID: 10484578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord.
    Bracci E; Ballerini L; Nistri A
    J Neurophysiol; 1996 Feb; 75(2):640-7. PubMed ID: 8714641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAB-receptor-mediated suppression of sympathetic outflow from the spinal cord of neonatal rats.
    Cheng YW; Ku MC; Ho CM; Chai CY; Su CK
    J Appl Physiol (1985); 2005 Nov; 99(5):1658-67. PubMed ID: 16037405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat.
    Iizuka M
    J Physiol; 2003 Sep; 551(Pt 2):617-33. PubMed ID: 12909685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal sympathetic activity generated in neonatal mouse brainstem-spinal cord preparation requires T-type calcium channel subunit 1H.
    Chen CC; Fan YP; Shin HS; Su CK
    Exp Physiol; 2011 May; 96(5):486-94. PubMed ID: 21296848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1998 May; 79(5):2581-92. PubMed ID: 9582230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamatergic activities in neonatal rat spinal cord heterogeneously regulate single-fiber splanchnic nerve discharge.
    Ho CM; Chiang CH; Lee CM; Fan YP; Su CK
    Auton Neurosci; 2013 Oct; 177(2):175-80. PubMed ID: 23665166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supraspinal contribution to splanchnic sympathetic activity in neonatal mouse and rat brainstem-spinal cord in vitro.
    Su CK; Fan YP; Chen CC; Chern Y
    Auton Neurosci; 2010 Aug; 156(1-2):51-9. PubMed ID: 20378419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal characterization of rhythmic activity in rat spinal cord slice cultures.
    Tscherter A; Heuschkel MO; Renaud P; Streit J
    Eur J Neurosci; 2001 Jul; 14(2):179-90. PubMed ID: 11553271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord.
    Christie KJ; Whelan PJ
    J Neurophysiol; 2005 Aug; 94(2):1554-64. PubMed ID: 15829596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological block of the electrogenic sodium pump disrupts rhythmic bursting induced by strychnine and bicuculline in the neonatal rat spinal cord.
    Ballerini L; Bracci E; Nistri A
    J Neurophysiol; 1997 Jan; 77(1):17-23. PubMed ID: 9120558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pituitary adenylate cyclase activating polypeptide on lumbosacral preganglionic neurons in the neonatal rat spinal cord.
    Miura A; Kawatani M; de Groat WC
    Brain Res; 2001 Mar; 895(1-2):223-32. PubMed ID: 11259781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical and histological determinants underlying natural firing behaviors of splanchnic sympathetic preganglionic neurons in neonatal rats.
    Su CK; Cheng YW; Lin S
    Neuroscience; 2007 Dec; 150(4):926-37. PubMed ID: 18022326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.