These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 12618441)

  • 1. The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli.
    Tsunedomi R; Izu H; Kawai T; Matsushita K; Ferenci T; Yamada M
    J Bacteriol; 2003 Mar; 185(6):1783-95. PubMed ID: 12618441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual control by regulators, GntH and GntR, of the GntII genes for gluconate metabolism in Escherichia coli.
    Tsunedomi R; Izu H; Kawai T; Yamada M
    J Mol Microbiol Biotechnol; 2003; 6(1):41-56. PubMed ID: 14593252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism.
    Tong S; Porco A; Isturiz T; Conway T
    J Bacteriol; 1996 Jun; 178(11):3260-9. PubMed ID: 8655507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli.
    Izu H; Adachi O; Yamada M
    J Mol Biol; 1997 Apr; 267(4):778-93. PubMed ID: 9135111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism.
    Porco A; Peekhaus N; Bausch C; Tong S; Isturiz T; Conway T
    J Bacteriol; 1997 Mar; 179(5):1584-90. PubMed ID: 9045817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The subsidiary GntII system for gluconate metabolism in Escherichia coli: alternative induction of the gntV gene.
    Gómez KM; Rodríguez A; Rodriguez Y; Ramírez AH; Istúriz T
    Biol Res; 2011; 44(3):269-75. PubMed ID: 22688914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)-cAMP receptor protein complex.
    Peekhaus N; Conway T
    J Bacteriol; 1998 Apr; 180(7):1777-85. PubMed ID: 9537375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional organization and regulation of the L-idonic acid pathway (GntII system) in Escherichia coli.
    Bausch C; Ramsey M; Conway T
    J Bacteriol; 2004 Mar; 186(5):1388-97. PubMed ID: 14973046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of gntS in the control of GntI, the main system for gluconate metabolism in Escherichia coli.
    Istúriz T; Díaz-Benjumea R; Rodriguez N; Porco A
    J Basic Microbiol; 2001; 41(2):75-83. PubMed ID: 11441462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in
    Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacillus subtilis gnt repressor mutants that diminish gluconate-binding ability.
    Yoshida K; Ohmori H; Miwa Y; Fujita Y
    J Bacteriol; 1995 Aug; 177(16):4813-6. PubMed ID: 7642511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of lacZ operon fusions in genes of gluconate metabolism in E. coli. characterization of a gntT::lacZ fusion.
    Porco A; Istúriz T
    Acta Cient Venez; 1991; 42(5):270-5. PubMed ID: 1843569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator.
    Fujita Y; Fujita T
    Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4524-8. PubMed ID: 3037520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolism of gluconate in Escherichia coli. The subsidiary system and the nature of the gntS gene.
    Istúriz T; Celaya J
    J Basic Microbiol; 1997; 37(2):105-14. PubMed ID: 9151423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the gntT gene encoding a high-affinity gluconate permease in Escherichia coli.
    Izu H; Kawai T; Yamada Y; Aoshima H; Adachi O; Yamada M
    Gene; 1997 Oct; 199(1-2):203-10. PubMed ID: 9358057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Missense mutations in the Bacillus subtilis gnt repressor that diminish operator binding ability.
    Yoshida K; Fujita Y; Sarai A
    J Mol Biol; 1993 May; 231(2):167-74. PubMed ID: 8510140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L-idonic acid catabolism in Escherichia coli.
    Bausch C; Peekhaus N; Utz C; Blais T; Murray E; Lowary T; Conway T
    J Bacteriol; 1998 Jul; 180(14):3704-10. PubMed ID: 9658018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gluconate high affinity transport of GntI in Escherichia coli involves a multicomponent complex system.
    Porco A; Alonso G; Istúriz T
    J Basic Microbiol; 1998; 38(5-6):395-404. PubMed ID: 9871335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of an insertional operator mutation (gntOi) that affects the expression level of the Bacillus subtilis gnt operon, and characterization of gntOi suppressor mutations.
    Yoshida K; Miwa Y; Ohmori H; Fujita Y
    Mol Gen Genet; 1995 Sep; 248(5):583-91. PubMed ID: 7476858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacillus subtilis GntR regulation modified to devise artificial transient induction systems.
    Majidian P; Kuse J; Tanaka K; Najafi H; Zeinalabedini M; Takenaka S; Yoshida KI
    J Gen Appl Microbiol; 2017 Jan; 62(6):277-285. PubMed ID: 27829583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.