These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 12618441)
21. Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. Kalivoda KA; Steenbergen SM; Vimr ER; Plumbridge J J Bacteriol; 2003 Aug; 185(16):4806-15. PubMed ID: 12897000 [TBL] [Abstract][Full Text] [Related]
22. Identification of an operator sequence for the Bacillus subtilis gnt operon. Fujita Y; Miwa Y J Biol Chem; 1989 Mar; 264(7):4201-6. PubMed ID: 2492998 [TBL] [Abstract][Full Text] [Related]
23. Evolution of molecular switches for regulation of transgene expression by clinically licensed gluconate. Teixeira AP; Xue S; Huang J; Fussenegger M Nucleic Acids Res; 2023 Aug; 51(15):e85. PubMed ID: 37497781 [TBL] [Abstract][Full Text] [Related]
24. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. Letek M; Valbuena N; Ramos A; Ordóñez E; Gil JA; Mateos LM J Bacteriol; 2006 Jan; 188(2):409-23. PubMed ID: 16385030 [TBL] [Abstract][Full Text] [Related]
25. A comprehensive alanine scanning mutagenesis of the Escherichia coli transcriptional activator SoxS: identifying amino acids important for DNA binding and transcription activation. Griffith KL; Wolf RE J Mol Biol; 2002 Sep; 322(2):237-57. PubMed ID: 12217688 [TBL] [Abstract][Full Text] [Related]
26. Molecular insights into effector binding by DgoR, a GntR/FadR family transcriptional repressor of D-galactonate metabolism in Escherichia coli. Arya G; Pal M; Sharma M; Singh B; Singh S; Agrawal V; Chaba R Mol Microbiol; 2021 Apr; 115(4):591-609. PubMed ID: 33068046 [TBL] [Abstract][Full Text] [Related]
27. Evidence for posttranscriptional regulation of synthesis of the Bacillus subtilis Gnt repressor. Fujita Y; Fujita T; Miwa Y FEBS Lett; 1990 Jul; 267(1):71-4. PubMed ID: 2163901 [TBL] [Abstract][Full Text] [Related]
28. Two DNA sites for MelR in the same orientation are sufficient for optimal MelR-dependent repression at the Escherichia coli melR promoter. Elrobh MS; Webster CL; Samarasinghe S; Durose D; Busby SJ FEMS Microbiol Lett; 2013 Jan; 338(1):62-7. PubMed ID: 23066992 [TBL] [Abstract][Full Text] [Related]
29. Complex synergistic amino acid-nucleotide interactions contribute to the specificity of NagC operator recognition and induction. Fernandez M; Plumbridge J Microbiology (Reading); 2019 Jul; 165(7):792-803. PubMed ID: 31107208 [TBL] [Abstract][Full Text] [Related]
30. Dual role of LldR in regulation of the lldPRD operon, involved in L-lactate metabolism in Escherichia coli. Aguilera L; Campos E; Giménez R; Badía J; Aguilar J; Baldoma L J Bacteriol; 2008 Apr; 190(8):2997-3005. PubMed ID: 18263722 [TBL] [Abstract][Full Text] [Related]
31. Autoregulation of the Escherichia coli melR promoter: repression involves four molecules of MelR. Samarasinghe S; El-Robh MS; Grainger DC; Zhang W; Soultanas P; Busby SJ Nucleic Acids Res; 2008 May; 36(8):2667-76. PubMed ID: 18346968 [TBL] [Abstract][Full Text] [Related]
32. Probing the Escherichia coli transcriptional activator MarA using alanine-scanning mutagenesis: residues important for DNA binding and activation. Gillette WK; Martin RG; Rosner JL J Mol Biol; 2000 Jun; 299(5):1245-55. PubMed ID: 10873449 [TBL] [Abstract][Full Text] [Related]
33. DeoT, a DeoR-type transcriptional regulator of multiple target genes. Elgrably-Weiss M; Schlosser-Silverman E; Rosenshine I; Altuvia S FEMS Microbiol Lett; 2006 Jan; 254(1):141-8. PubMed ID: 16451192 [TBL] [Abstract][Full Text] [Related]
34. Repression and activation of arginine transport genes in Escherichia coli K 12 by the ArgP protein. Celis RT J Mol Biol; 1999 Dec; 294(5):1087-95. PubMed ID: 10600368 [TBL] [Abstract][Full Text] [Related]
35. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene. Sá-Nogueira I; Mota LJ J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819 [TBL] [Abstract][Full Text] [Related]
36. McbR/YncC: implications for the mechanism of ligand and DNA binding by a bacterial GntR transcriptional regulator involved in biofilm formation. Lord DM; Uzgoren Baran A; Soo VW; Wood TK; Peti W; Page R Biochemistry; 2014 Nov; 53(46):7223-31. PubMed ID: 25376905 [TBL] [Abstract][Full Text] [Related]
37. Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa. Daddaoua A; Corral-Lugo A; Ramos JL; Krell T Environ Microbiol; 2017 Sep; 19(9):3721-3733. PubMed ID: 28752954 [TBL] [Abstract][Full Text] [Related]
38. Analysis of the gluconate (gnt) operon of Bacillus subtilis. Reizer A; Deutscher J; Saier MH; Reizer J Mol Microbiol; 1991 May; 5(5):1081-9. PubMed ID: 1659648 [TBL] [Abstract][Full Text] [Related]
39. Characterization of TetD as a transcriptional activator of a subset of genes of the Escherichia coli SoxS/MarA/Rob regulon. Griffith KL; Becker SM; Wolf RE Mol Microbiol; 2005 May; 56(4):1103-17. PubMed ID: 15853893 [TBL] [Abstract][Full Text] [Related]
40. Purification and characterization of a repressor for the Bacillus subtilis gnt operon. Miwa Y; Fujita Y J Biol Chem; 1988 Sep; 263(26):13252-7. PubMed ID: 2843515 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]