BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 12618458)

  • 21. The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death.
    Banjac A; Perisic T; Sato H; Seiler A; Bannai S; Weiss N; Kölle P; Tschoep K; Issels RD; Daniel PT; Conrad M; Bornkamm GW
    Oncogene; 2008 Mar; 27(11):1618-28. PubMed ID: 17828297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro.
    Imlay JA; Chin SM; Linn S
    Science; 1988 Apr; 240(4852):640-2. PubMed ID: 2834821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese.
    Sobota JM; Imlay JA
    Proc Natl Acad Sci U S A; 2011 Mar; 108(13):5402-7. PubMed ID: 21402925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorothioated DNA Is Shielded from Oxidative Damage.
    Pu T; Liang J; Mei Z; Yang Y; Wang J; Zhang W; Liang WJ; Zhou X; Deng Z; Wang Z
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30737351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidative modification of ferritin induced by hydrogen peroxide.
    Yoon JH; An SH; Kyeong IG; Lee MS; Kwon SC; Kang JH
    BMB Rep; 2011 Mar; 44(3):165-9. PubMed ID: 21429293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repair of DNA lesions induced by hydrogen peroxide in the presence of iron chelators in Escherichia coli: participation of endonuclease IV and Fpg.
    Galhardo RS; Almeida CE; Leitão AC; Cabral-Neto JB
    J Bacteriol; 2000 Apr; 182(7):1964-8. PubMed ID: 10715004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superoxide and the production of oxidative DNA damage.
    Keyer K; Gort AS; Imlay JA
    J Bacteriol; 1995 Dec; 177(23):6782-90. PubMed ID: 7592468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress.
    Dukan S; Touati D
    J Bacteriol; 1996 Nov; 178(21):6145-50. PubMed ID: 8892812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A common mechanism of cellular death induced by bactericidal antibiotics.
    Kohanski MA; Dwyer DJ; Hayete B; Lawrence CA; Collins JJ
    Cell; 2007 Sep; 130(5):797-810. PubMed ID: 17803904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of H(2)O(2)on human lens epithelial cells and the possible mechanism for oxidative damage repair by thioltransferase.
    Xing KY; Lou MF
    Exp Eye Res; 2002 Jan; 74(1):113-22. PubMed ID: 11878824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endogenous superoxide dismutase levels regulate iron-dependent hydroxyl radical formation in Escherichia coli exposed to hydrogen peroxide.
    McCormick ML; Buettner GR; Britigan BE
    J Bacteriol; 1998 Feb; 180(3):622-5. PubMed ID: 9457866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DR1440 is a potential iron efflux protein involved in maintenance of iron homeostasis and resistance of Deinococcus radiodurans to oxidative stress.
    Dai S; Jin Y; Li T; Weng Y; Xu X; Zhang G; Li J; Pang R; Tian B; Hua Y
    PLoS One; 2018; 13(8):e0202287. PubMed ID: 30106993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lysosomal redox-active iron is important for oxidative stress-induced DNA damage.
    Kurz T; Leake A; von Zglinicki T; Brunk UT
    Ann N Y Acad Sci; 2004 Jun; 1019():285-8. PubMed ID: 15247030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potent antitumor activity of novel iron chelators derived from di-2-pyridylketone isonicotinoyl hydrazone involves fenton-derived free radical generation.
    Chaston TB; Watts RN; Yuan J; Richardson DR
    Clin Cancer Res; 2004 Nov; 10(21):7365-74. PubMed ID: 15534113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of nitroxide radicals on oxidative DNA damage.
    Damiani E; Kalinska B; Canapa A; Canestrari S; Wozniak M; Olmo E; Greci L
    Free Radic Biol Med; 2000 Apr; 28(8):1257-65. PubMed ID: 10889456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron(II) and hydrogen peroxide detoxification by human H-chain ferritin. An EPR spin-trapping study.
    Zhao G; Arosio P; Chasteen ND
    Biochemistry; 2006 Mar; 45(10):3429-36. PubMed ID: 16519538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper, zinc superoxide dismutase enhances DNA damage and mutagenicity induced by cysteine/iron.
    Yoon SJ; Koh YH; Floyd RA; Park JW
    Mutat Res; 2000 Mar; 448(1):97-104. PubMed ID: 10751627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the fenton reaction.
    Pericone CD; Park S; Imlay JA; Weiser JN
    J Bacteriol; 2003 Dec; 185(23):6815-25. PubMed ID: 14617646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion.
    Varghese S; Tang Y; Imlay JA
    J Bacteriol; 2003 Jan; 185(1):221-30. PubMed ID: 12486059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.