BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12619052)

  • 1. Characterisation of the human liver in vitro metabolic pattern of artemisinin and auto-induction in the rat by use of nonlinear mixed effects modelling.
    Svensson US; Mäki-Jouppila M; Hoffmann KJ; Ashton M
    Biopharm Drug Dispos; 2003 Mar; 24(2):71-85. PubMed ID: 12619052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin.
    Svensson US; Ashton M
    Br J Clin Pharmacol; 1999 Oct; 48(4):528-35. PubMed ID: 10583023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of P450 inhibition and induction by artemisinin antimalarials in human liver microsomes and primary human hepatocytes.
    Xing J; Kirby BJ; Whittington D; Wan Y; Goodlett DR
    Drug Metab Dispos; 2012 Sep; 40(9):1757-64. PubMed ID: 22679214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artemisinin--a possible CYP2B6 probe substrate?
    Asimus S; Ashton M
    Biopharm Drug Dispos; 2009 Jul; 30(5):265-75. PubMed ID: 19562679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of (-)-fenchone by CYP2A6 and CYP2B6 in human liver microsomes.
    Miyazawa M; Gyoubu K
    Xenobiotica; 2007 Feb; 37(2):194-204. PubMed ID: 17484521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic role of cytochrome P4502B6 in the N-demethylation of S-mephenytoin.
    Heyn H; White RB; Stevens JC
    Drug Metab Dispos; 1996 Sep; 24(9):948-54. PubMed ID: 8886603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of (+)-fenchone by CYP2A6 and CYP2B6 in human liver microsomes.
    Miyazawa M; Gyoubu K
    Biol Pharm Bull; 2006 Dec; 29(12):2354-8. PubMed ID: 17142962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome P450 isozymes 3A4 and 2B6 are involved in the in vitro human metabolism of thiotepa to TEPA.
    Jacobson PA; Green K; Birnbaum A; Remmel RP
    Cancer Chemother Pharmacol; 2002 Jun; 49(6):461-7. PubMed ID: 12107550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes.
    Yamazaki H; Inoue K; Hashimoto M; Shimada T
    Arch Toxicol; 1999 Mar; 73(2):65-70. PubMed ID: 10350185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cdna-expressed human cytochrome P450.
    Ghosal A; Satoh H; Thomas PE; Bush E; Moore D
    Drug Metab Dispos; 1996 Sep; 24(9):940-7. PubMed ID: 8886602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of artelinic acid to dihydroqinqhaosu by human liver cytochrome P4503A.
    Grace JM; Skanchy DJ; Aguilar AJ
    Xenobiotica; 1999 Jul; 29(7):703-17. PubMed ID: 10456689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of tauromustine in liver and lung microsomes from various species.
    Tuvesson H; Gunnarsson PO; Seidegård J
    Xenobiotica; 1999 Aug; 29(8):783-92. PubMed ID: 10553719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of endosulfan-alpha by human liver microsomes and its utility as a simultaneous in vitro probe for CYP2B6 and CYP3A4.
    Casabar RC; Wallace AD; Hodgson E; Rose RL
    Drug Metab Dispos; 2006 Oct; 34(10):1779-85. PubMed ID: 16855053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes.
    Ramírez J; Innocenti F; Schuetz EG; Flockhart DA; Relling MV; Santucci R; Ratain MJ
    Drug Metab Dispos; 2004 Sep; 32(9):930-6. PubMed ID: 15319333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype.
    Kiang TK; Ho PC; Anari MR; Tong V; Abbott FS; Chang TK
    Toxicol Sci; 2006 Dec; 94(2):261-71. PubMed ID: 16945988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of human CYP2A6 and rat CYP2B1 in the oxidation of (+)-fenchol by liver microsomes.
    Miyazawa M; Gyoubu K
    Xenobiotica; 2007 Sep; 37(9):943-53. PubMed ID: 17992728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of 1,2-epoxy-3-butene to 1,2:3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes.
    Seaton MJ; Follansbee MH; Bond JA
    Carcinogenesis; 1995 Oct; 16(10):2287-93. PubMed ID: 7586124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation in vitro of an inhibitory cytochrome P450 x Fe2+-metabolite complex with roxithromycin and its decladinosyl, O-dealkyl and N-demethyl metabolites in rat liver microsomes.
    Yamazaki H; Shimada T
    Xenobiotica; 1998 Oct; 28(10):995-1004. PubMed ID: 9849646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of human CYP2A6 and 2B6 and rat CYP2C11 and 2B1 in the 10-hydroxylation of (-)-verbenone by liver microsomes.
    Miyazawa M; Sugie A; Shimada T
    Drug Metab Dispos; 2003 Aug; 31(8):1049-53. PubMed ID: 12867494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro biotransformation of a novel antimalarial cysteine protease inhibitor in human liver microsomes.
    Zhang Y; Guo X; Lin ET; Benet LZ
    Pharmacology; 1999 Mar; 58(3):147-59. PubMed ID: 9925971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.