These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12620030)

  • 1. Preliminary investigation of submerged aquatic vegetation mapping using hyperspectral remote sensing.
    William DJ; Rybicki NB; Lombana AV; O'Brien TM; Gomez RB
    Environ Monit Assess; 2003; 81(1-3):383-92. PubMed ID: 12620030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing.
    Visser F; Buis K; Verschoren V; Meire P
    Sensors (Basel); 2015 Sep; 15(10):25287-312. PubMed ID: 26437410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seagrass resource assessment using remote sensing methods in St. Joseph Sound and Clearwater Harbor, Florida, USA.
    Meyer CA; Pu R
    Environ Monit Assess; 2012 Jan; 184(2):1131-43. PubMed ID: 21487716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape.
    Lausch A; Pause M; Merbach I; Zacharias S; Doktor D; Volk M; Seppelt R
    Environ Monit Assess; 2013 Feb; 185(2):1215-35. PubMed ID: 22527462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing.
    Zomer RJ; Trabucco A; Ustin SL
    J Environ Manage; 2009 May; 90(7):2170-7. PubMed ID: 18395960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.
    Gillan JK; Karl JW; Duniway M; Elaksher A
    J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ and airborne hyperspectral data for detecting agricultural activities in a dense forest landscape.
    Rajesh CB; Kumar CVSSM; Jha SS; Ramachandran KI; Nidamanuri RR
    Data Brief; 2023 Oct; 50():109510. PubMed ID: 37663764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Test of multi-spectral vegetation index for floating and canopy-forming submerged vegetation.
    Cho HJ; Kirui P; Natarajan H
    Int J Environ Res Public Health; 2008 Dec; 5(5):477-83. PubMed ID: 19151445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-platform optical remote sensing dataset for target detection.
    Jha SS; Kumar M; Nidamanuri RR
    Data Brief; 2020 Dec; 33():106362. PubMed ID: 33088874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Submerged macrophyte assessment in rivers: An automatic mapping method using Pléiades imagery.
    Espel D; Courty S; Auda Y; Sheeren D; Elger A
    Water Res; 2020 Nov; 186():116353. PubMed ID: 32919140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Health condition assessment for vegetation exposed to heavy metal pollution through airborne hyperspectral data.
    Banerjee BP; Raval S; Zhai H; Cullen PJ
    Environ Monit Assess; 2017 Nov; 189(12):604. PubMed ID: 29101574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vegetation health conditions assessment and mapping using AVIRIS-NG hyperspectral and field spectroscopy data for -environmental impact assessment in coal mining sites.
    Kayet N; Pathak K; Singh CP; Chowdary VM; Bhattacharya BK; Kumar D; Kumar S; Shaik I
    Ecotoxicol Environ Saf; 2022 Jul; 239():113650. PubMed ID: 35605326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.
    Michez A; Piégay H; Lisein J; Claessens H; Lejeune P
    Environ Monit Assess; 2016 Mar; 188(3):146. PubMed ID: 26850712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fish abundances in shoreline habitats and submerged aquatic vegetation in a tidal freshwater embayment of the Potomac River.
    Kraus RT; Jones RC
    Environ Monit Assess; 2012 May; 184(5):3341-57. PubMed ID: 21713468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification for the species of aquatic higher plants in the Taihu Lake basin based on hyperspectral remote sensing.
    Mu S; You K; Song T; Li Y; Wang L; Shi J
    Environ Monit Assess; 2023 Jul; 195(8):989. PubMed ID: 37491640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote sensing of land degradation: experiences from Latin America and the Caribbean.
    Metternicht G; Zinck JA; Blanco PD; del Valle HF
    J Environ Qual; 2010; 39(1):42-61. PubMed ID: 20048293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact.
    Khanna S; Santos MJ; Ustin SL; Shapiro K; Haverkamp PJ; Lay M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.