BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

621 related articles for article (PubMed ID: 12620104)

  • 1. The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers.
    Koonin EV; Makarova KS; Rogozin IB; Davidovic L; Letellier MC; Pellegrini L
    Genome Biol; 2003; 4(3):R19. PubMed ID: 12620104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids.
    Urban S; Schlieper D; Freeman M
    Curr Biol; 2002 Sep; 12(17):1507-12. PubMed ID: 12225666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
    Mirkin BG; Fenner TI; Galperin MY; Koonin EV
    BMC Evol Biol; 2003 Jan; 3():2. PubMed ID: 12515582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases.
    Lemberg MK; Freeman M
    Genome Res; 2007 Nov; 17(11):1634-46. PubMed ID: 17938163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatics perspective on rhomboid intramembrane protease evolution and function.
    Kinch LN; Grishin NV
    Biochim Biophys Acta; 2013 Dec; 1828(12):2937-43. PubMed ID: 23845876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramembrane proteolysis of Mgm1 by the mitochondrial rhomboid protease is highly promiscuous regarding the sequence of the cleaved hydrophobic segment.
    Schäfer A; Zick M; Kief J; Steger M; Heide H; Duvezin-Caubet S; Neupert W; Reichert AS
    J Mol Biol; 2010 Aug; 401(2):182-93. PubMed ID: 20558178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhomboid homologs in mycobacteria: insights from phylogeny and genomic analysis.
    Kateete DP; Okee M; Katabazi FA; Okeng A; Asiimwe J; Boom HW; Eisenach KD; Joloba ML
    BMC Microbiol; 2010 Oct; 10():272. PubMed ID: 21029479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhomboid-like proteins in Apicomplexa: phylogeny and nomenclature.
    Dowse TJ; Soldati D
    Trends Parasitol; 2005 Jun; 21(6):254-8. PubMed ID: 15922242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary dynamics of rhomboid proteases in Streptomycetes.
    Novick PA; Carmona NM; Trujillo M
    BMC Res Notes; 2015 Jun; 8():234. PubMed ID: 26054641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes.
    Gallio M; Sturgill G; Rather P; Kylsten P
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12208-13. PubMed ID: 12221285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross genome comparisons of serine proteases in Arabidopsis and rice.
    Tripathi LP; Sowdhamini R
    BMC Genomics; 2006 Aug; 7():200. PubMed ID: 16895613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution before the origin of species.
    Davis BK
    Prog Biophys Mol Biol; 2002; 79(1-3):77-133. PubMed ID: 12225777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain.
    Urban S; Freeman M
    Mol Cell; 2003 Jun; 11(6):1425-34. PubMed ID: 12820957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging role of rhomboid family proteins in mammalian biology and disease.
    Bergbold N; Lemberg MK
    Biochim Biophys Acta; 2013 Dec; 1828(12):2840-8. PubMed ID: 23562403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases.
    Kerk D; Silver D; Uhrig RG; Moorhead GB
    PLoS One; 2015; 10(8):e0132863. PubMed ID: 26241330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain.
    Aravind L; Iyer LM; Leipe DD; Koonin EV
    Genome Biol; 2004; 5(5):R30. PubMed ID: 15128444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-2 protease regulated intramembrane proteolysis: sequence homologs suggest an ancient signaling cascade.
    Kinch LN; Ginalski K; Grishin NV
    Protein Sci; 2006 Jan; 15(1):84-93. PubMed ID: 16322567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential evolution of members of the rhomboid gene family with conservative and divergent patterns.
    Li Q; Zhang N; Zhang L; Ma H
    New Phytol; 2015 Apr; 206(1):368-380. PubMed ID: 25417867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origins of modern proteomes.
    Kurland CG; Canbäck B; Berg OG
    Biochimie; 2007 Dec; 89(12):1454-63. PubMed ID: 17949885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease.
    McQuibban GA; Saurya S; Freeman M
    Nature; 2003 May; 423(6939):537-41. PubMed ID: 12774122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.