These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12620162)

  • 1. Simple-cell-like receptive fields maximize temporal coherence in natural video.
    Hurri J; Hyvärinen A
    Neural Comput; 2003 Mar; 15(3):663-91. PubMed ID: 12620162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quadratic forms in natural images.
    Hashimoto W
    Network; 2003 Nov; 14(4):765-88. PubMed ID: 14653502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of simple-cell receptive field properties by learning a sparse code for natural images.
    Olshausen BA; Field DJ
    Nature; 1996 Jun; 381(6583):607-9. PubMed ID: 8637596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear and extra-classical receptive field properties and the statistics of natural scenes.
    Zetzsche C; Röhrbein F
    Network; 2001 Aug; 12(3):331-50. PubMed ID: 11563533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is sparse and distributed the coding goal of simple cells?
    Zhao L
    Biol Cybern; 2004 Dec; 91(6):408-16. PubMed ID: 15597179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.
    Tanaka T; Aoyagi T; Kaneko T
    Neural Comput; 2012 Oct; 24(10):2700-25. PubMed ID: 22845820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural image sequences constrain dynamic receptive fields and imply a sparse code.
    Häusler C; Susemihl A; Nawrot MP
    Brain Res; 2013 Nov; 1536():53-67. PubMed ID: 23933349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptive field self-organization in a model of the fine structure in v1 cortical columns.
    Lücke J
    Neural Comput; 2009 Oct; 21(10):2805-45. PubMed ID: 19548804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of localized oriented receptive fields by learning a translation-invariant code for natural images.
    Rao RP; Ballard DH
    Network; 1998 May; 9(2):219-34. PubMed ID: 9861987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual receptive field organization.
    Bair W
    Curr Opin Neurobiol; 2005 Aug; 15(4):459-64. PubMed ID: 16023850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex cell pooling and the statistics of natural images.
    Hyvärinen A; Köster U
    Network; 2007 Jun; 18(2):81-100. PubMed ID: 17852755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How are complex cell properties adapted to the statistics of natural stimuli?
    Körding KP; Kayser C; Einhäuser W; König P
    J Neurophysiol; 2004 Jan; 91(1):206-12. PubMed ID: 12904330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical models of natural images and cortical visual representation.
    Hyvärinen A
    Top Cogn Sci; 2010 Apr; 2(2):251-64. PubMed ID: 25163788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural signal statistics and sensory gain control.
    Schwartz O; Simoncelli EP
    Nat Neurosci; 2001 Aug; 4(8):819-25. PubMed ID: 11477428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple Hebbian/anti-Hebbian network learns the sparse, independent components of natural images.
    Falconbridge MS; Stamps RL; Badcock DR
    Neural Comput; 2006 Feb; 18(2):415-29. PubMed ID: 16378520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal and spatiotemporal coherence in simple-cell responses: a generative model of natural image sequences.
    Hurri J; Hyvärinen A
    Network; 2003 Aug; 14(3):527-51. PubMed ID: 12938770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating nonlinear receptive fields from natural images.
    Rapela J; Mendel JM; Grzywacz NM
    J Vis; 2006 May; 6(4):441-74. PubMed ID: 16889480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system.
    Rolls ET; Tromans JM; Stringer SM
    Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thalamocortical specificity and the synthesis of sensory cortical receptive fields.
    Alonso JM; Swadlow HA
    J Neurophysiol; 2005 Jul; 94(1):26-32. PubMed ID: 15985693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of receptive field size in primary visual cortex.
    Malone BJ; Kumar VR; Ringach DL
    J Neurophysiol; 2007 Jan; 97(1):407-14. PubMed ID: 17021020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.