These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
541 related articles for article (PubMed ID: 12620980)
61. A dual role for homothorax in inhibiting wing blade development and specifying proximal wing identities in Drosophila. Casares F; Mann RS Development; 2000 Apr; 127(7):1499-508. PubMed ID: 10704395 [TBL] [Abstract][Full Text] [Related]
62. The ultrabithorax Hox gene of Drosophila controls haltere size by regulating the Dpp pathway. de Navas LF; Garaulet DL; Sánchez-Herrero E Development; 2006 Nov; 133(22):4495-506. PubMed ID: 17050628 [TBL] [Abstract][Full Text] [Related]
63. Wingless modulates the effects of dominant negative notch molecules in the developing wing of Drosophila. Brennan K; Klein T; Wilder E; Arias AM Dev Biol; 1999 Dec; 216(1):210-29. PubMed ID: 10588873 [TBL] [Abstract][Full Text] [Related]
64. Haltere development in D. melanogaster: implications for the evolution of appendage size, shape and function. Khan S; Dilsha C; Shashidhara LS Int J Dev Biol; 2020; 64(1-2-3):159-165. PubMed ID: 32659004 [TBL] [Abstract][Full Text] [Related]
65. Control of tissue morphogenesis by the HOX gene Diaz-de-la-Loza MD; Loker R; Mann RS; Thompson BJ Development; 2020 Mar; 147(5):. PubMed ID: 32122911 [TBL] [Abstract][Full Text] [Related]
66. Salvador-Warts-Hippo pathway regulates sensory organ development via caspase-dependent nonapoptotic signaling. Wang LH; Baker NE Cell Death Dis; 2019 Sep; 10(9):669. PubMed ID: 31511495 [TBL] [Abstract][Full Text] [Related]
67. Ultrabithorax and the evolution of insect forewing/hindwing differentiation. Tomoyasu Y Curr Opin Insect Sci; 2017 Feb; 19():8-15. PubMed ID: 28521947 [TBL] [Abstract][Full Text] [Related]
68. Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc. Han C; Yan D; Belenkaya TY; Lin X Development; 2005 Feb; 132(4):667-79. PubMed ID: 15647319 [TBL] [Abstract][Full Text] [Related]
70. Molecular interactions between Vestigial and Scalloped promote wing formation in Drosophila. Simmonds AJ; Liu X; Soanes KH; Krause HM; Irvine KD; Bell JB Genes Dev; 1998 Dec; 12(24):3815-20. PubMed ID: 9869635 [TBL] [Abstract][Full Text] [Related]
71. A Wingless and Notch double-repression mechanism regulates G1-S transition in the Drosophila wing. Herranz H; Pérez L; Martín FA; Milán M EMBO J; 2008 Jun; 27(11):1633-45. PubMed ID: 18451803 [TBL] [Abstract][Full Text] [Related]
72. Modifiers of bx1 alter the distribution of Ubx proteins in haltere imaginal discs of Drosophila. Manoukian AS; Krause HM; Larsen EW Dev Biol; 1992 Jun; 151(2):611-6. PubMed ID: 1601188 [TBL] [Abstract][Full Text] [Related]
73. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Goulev Y; Fauny JD; Gonzalez-Marti B; Flagiello D; Silber J; Zider A Curr Biol; 2008 Mar; 18(6):435-41. PubMed ID: 18313299 [TBL] [Abstract][Full Text] [Related]
74. Decapentaplegic signaling regulates Wingless ligand production and target activation during Drosophila wing development. Li Y; Zhang F; Jiang N; Liu T; Shen J; Zhang J FEBS Lett; 2020 Apr; 594(7):1176-1186. PubMed ID: 31814119 [TBL] [Abstract][Full Text] [Related]
75. The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila. Halder G; Polaczyk P; Kraus ME; Hudson A; Kim J; Laughon A; Carroll S Genes Dev; 1998 Dec; 12(24):3900-9. PubMed ID: 9869643 [TBL] [Abstract][Full Text] [Related]
76. Homeodomain-interacting protein kinases (Hipks) promote Wnt/Wg signaling through stabilization of beta-catenin/Arm and stimulation of target gene expression. Lee W; Swarup S; Chen J; Ishitani T; Verheyen EM Development; 2009 Jan; 136(2):241-51. PubMed ID: 19088090 [TBL] [Abstract][Full Text] [Related]
77. Spenito and Split ends act redundantly to promote Wingless signaling. Chang JL; Lin HV; Blauwkamp TA; Cadigan KM Dev Biol; 2008 Feb; 314(1):100-11. PubMed ID: 18174108 [TBL] [Abstract][Full Text] [Related]
78. Nemo is an inducible antagonist of Wingless signaling during Drosophila wing development. Zeng YA; Verheyen EM Development; 2004 Jun; 131(12):2911-20. PubMed ID: 15169756 [TBL] [Abstract][Full Text] [Related]
79. Combgap relays wingless signal reception to the determination of cortical cell fate in the Drosophila visual system. Song Y; Chung S; Kunes S Mol Cell; 2000 Nov; 6(5):1143-54. PubMed ID: 11106753 [TBL] [Abstract][Full Text] [Related]
80. The vestigial gene product provides a molecular context for the interpretation of signals during the development of the wing in Drosophila. Klein T; Arias AM Development; 1999 Feb; 126(5):913-25. PubMed ID: 9927593 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]