BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12621035)

  • 1. Stimulation of beta 2-adrenergic receptor increases cystic fibrosis transmembrane conductance regulator expression in human airway epithelial cells through a cAMP/protein kinase A-independent pathway.
    Taouil K; Hinnrasky J; Hologne C; Corlieu P; Klossek JM; Puchelle E
    J Biol Chem; 2003 May; 278(19):17320-7. PubMed ID: 12621035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells.
    Sun F; Hug MJ; Lewarchik CM; Yun CH; Bradbury NA; Frizzell RA
    J Biol Chem; 2000 Sep; 275(38):29539-46. PubMed ID: 10893422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA.
    Naren AP; Cobb B; Li C; Roy K; Nelson D; Heda GD; Liao J; Kirk KL; Sorscher EJ; Hanrahan J; Clancy JP
    Proc Natl Acad Sci U S A; 2003 Jan; 100(1):342-6. PubMed ID: 12502786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the PDZ1 domain of human Na(+)/H(+) exchanger regulatory factor provides insights into the mechanism of carboxyl-terminal leucine recognition by class I PDZ domains.
    Karthikeyan S; Leung T; Birrane G; Webster G; Ladias JA
    J Mol Biol; 2001 May; 308(5):963-73. PubMed ID: 11352585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity.
    Monterisi S; Favia M; Guerra L; Cardone RA; Marzulli D; Reshkin SJ; Casavola V; Zaccolo M
    J Cell Sci; 2012 Mar; 125(Pt 5):1106-17. PubMed ID: 22302988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-β1 and cigarette smoke inhibit the ability of β2-agonists to enhance epithelial permeability.
    Unwalla HJ; Ivonnet P; Dennis JS; Conner GE; Salathe M
    Am J Respir Cell Mol Biol; 2015 Jan; 52(1):65-74. PubMed ID: 24978189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yes-associated protein 65 localizes p62(c-Yes) to the apical compartment of airway epithelia by association with EBP50.
    Mohler PJ; Kreda SM; Boucher RC; Sudol M; Stutts MJ; Milgram SL
    J Cell Biol; 1999 Nov; 147(4):879-90. PubMed ID: 10562288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton.
    Short DB; Trotter KW; Reczek D; Kreda SM; Bretscher A; Boucher RC; Stutts MJ; Milgram SL
    J Biol Chem; 1998 Jul; 273(31):19797-801. PubMed ID: 9677412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the C terminus and Na+/H+ exchanger regulatory factor in the functional expression of cystic fibrosis transmembrane conductance regulator in nonpolarized cells and epithelia.
    Benharouga M; Sharma M; So J; Haardt M; Drzymala L; Popov M; Schwapach B; Grinstein S; Du K; Lukacs GL
    J Biol Chem; 2003 Jun; 278(24):22079-89. PubMed ID: 12651858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the scaffold protein RACK1 in apical expression of CFTR.
    Auerbach M; Liedtke CM
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C294-304. PubMed ID: 17409124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells.
    Guerra L; Fanelli T; Favia M; Riccardi SM; Busco G; Cardone RA; Carrabino S; Weinman EJ; Reshkin SJ; Conese M; Casavola V
    J Biol Chem; 2005 Dec; 280(49):40925-33. PubMed ID: 16203733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic regulation of cystic fibrosis transmembrane conductance regulator by competitive interactions of molecular adaptors.
    Lee JH; Richter W; Namkung W; Kim KH; Kim E; Conti M; Lee MG
    J Biol Chem; 2007 Apr; 282(14):10414-22. PubMed ID: 17244609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocal protein kinase A regulatory interactions between cystic fibrosis transmembrane conductance regulator and Na+/H+ exchanger isoform 3 in a renal polarized epithelial cell model.
    Bagorda A; Guerra L; Di Sole F; Hemle-Kolb C; Cardone RA; Fanelli T; Reshkin SJ; Gisler SM; Murer H; Casavola V
    J Biol Chem; 2002 Jun; 277(24):21480-8. PubMed ID: 11937500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ezrin controls the macromolecular complexes formed between an adapter protein Na+/H+ exchanger regulatory factor and the cystic fibrosis transmembrane conductance regulator.
    Li J; Dai Z; Jana D; Callaway DJ; Bu Z
    J Biol Chem; 2005 Nov; 280(45):37634-43. PubMed ID: 16129695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-oestradiol rescues DeltaF508CFTR functional expression in human cystic fibrosis airway CFBE41o- cells through the up-regulation of NHERF1.
    Fanelli T; Cardone RA; Favia M; Guerra L; Zaccolo M; Monterisi S; De Santis T; Riccardi SM; Reshkin SJ; Casavola V
    Biol Cell; 2008 Jul; 100(7):399-412. PubMed ID: 18184109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins.
    Hall RA; Ostedgaard LS; Premont RT; Blitzer JT; Rahman N; Welsh MJ; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 1998 Jul; 95(15):8496-501. PubMed ID: 9671706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The PDZ-interacting domain of cystic fibrosis transmembrane conductance regulator is required for functional expression in the apical plasma membrane.
    Moyer BD; Duhaime M; Shaw C; Denton J; Reynolds D; Karlson KH; Pfeiffer J; Wang S; Mickle JE; Milewski M; Cutting GR; Guggino WB; Li M; Stanton BA
    J Biol Chem; 2000 Sep; 275(35):27069-74. PubMed ID: 10852925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of Xenopus P2Y1 receptor activates CFTR in A6 cells.
    Guerra L; Favia M; Fanelli T; Calamita G; Svetlo M; Bagorda A; Jacobson KA; Reshkin SJ; Casavola V
    Pflugers Arch; 2004 Oct; 449(1):66-75. PubMed ID: 15235914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A PDZ-interacting domain in CFTR is an apical membrane polarization signal.
    Moyer BD; Denton J; Karlson KH; Reynolds D; Wang S; Mickle JE; Milewski M; Cutting GR; Guggino WB; Li M; Stanton BA
    J Clin Invest; 1999 Nov; 104(10):1353-61. PubMed ID: 10562297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ezrin-radixin-moesin-binding phosphoprotein-50/Na+/H+ exchanger regulatory factor (EBP50/NHERF) blocks U50,488H-induced down-regulation of the human kappa opioid receptor by enhancing its recycling rate.
    Li JG; Chen C; Liu-Chen LY
    J Biol Chem; 2002 Jul; 277(30):27545-52. PubMed ID: 12004055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.