These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 12621035)
21. β1, β2, and β3 adrenoceptors and Na+/H+ exchanger regulatory factor 1 expression in human bronchi and their modifications in cystic fibrosis. Bossard F; Silantieff E; Lavazais-Blancou E; Robay A; Sagan C; Rozec B; Gauthier C Am J Respir Cell Mol Biol; 2011 Jan; 44(1):91-8. PubMed ID: 20203292 [TBL] [Abstract][Full Text] [Related]
22. Specificity of NHERF1 regulation of GPCR signaling and function in human airway smooth muscle. Pera T; Tompkins E; Katz M; Wang B; Deshpande DA; Weinman EJ; Penn RB FASEB J; 2019 Aug; 33(8):9008-9016. PubMed ID: 31042404 [TBL] [Abstract][Full Text] [Related]
23. Role of NHERF1, cystic fibrosis transmembrane conductance regulator, and cAMP in the regulation of aquaporin 9. Pietrement C; Da Silva N; Silberstein C; James M; Marsolais M; Van Hoek A; Brown D; Pastor-Soler N; Ameen N; Laprade R; Ramesh V; Breton S J Biol Chem; 2008 Feb; 283(5):2986-96. PubMed ID: 18055461 [TBL] [Abstract][Full Text] [Related]
24. Protein kinase C phosphorylation disrupts Na+/H+ exchanger regulatory factor 1 autoinhibition and promotes cystic fibrosis transmembrane conductance regulator macromolecular assembly. Li J; Poulikakos PI; Dai Z; Testa JR; Callaway DJE; Bu Z J Biol Chem; 2007 Sep; 282(37):27086-27099. PubMed ID: 17613530 [TBL] [Abstract][Full Text] [Related]
25. A kinase-regulated mechanism controls CFTR channel gating by disrupting bivalent PDZ domain interactions. Raghuram V; Hormuth H; Foskett JK Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9620-5. PubMed ID: 12881487 [TBL] [Abstract][Full Text] [Related]
26. NHERF1 and CFTR restore tight junction organisation and function in cystic fibrosis airway epithelial cells: role of ezrin and the RhoA/ROCK pathway. Castellani S; Guerra L; Favia M; Di Gioia S; Casavola V; Conese M Lab Invest; 2012 Nov; 92(11):1527-40. PubMed ID: 22964850 [TBL] [Abstract][Full Text] [Related]
27. Molecular assembly of cystic fibrosis transmembrane conductance regulator in plasma membrane. Li C; Roy K; Dandridge K; Naren AP J Biol Chem; 2004 Jun; 279(23):24673-84. PubMed ID: 15060073 [TBL] [Abstract][Full Text] [Related]
28. CFTR-NHERF2-LPA₂ Complex in the Airway and Gut Epithelia. Zhang W; Zhang Z; Zhang Y; Naren AP Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28869532 [TBL] [Abstract][Full Text] [Related]
29. Transfected beta3- but not beta2-adrenergic receptors regulate cystic fibrosis transmembrane conductance regulator activity via a new pathway involving the mitogen-activated protein kinases extracellular signal-regulated kinases. Robay A; Toumaniantz G; Leblais V; Gauthier C Mol Pharmacol; 2005 Mar; 67(3):648-54. PubMed ID: 15563584 [TBL] [Abstract][Full Text] [Related]
30. Phosphorylation of PDZ1 domain attenuates NHERF-1 binding to cellular targets. Voltz JW; Brush M; Sikes S; Steplock D; Weinman EJ; Shenolikar S J Biol Chem; 2007 Nov; 282(46):33879-33887. PubMed ID: 17895247 [TBL] [Abstract][Full Text] [Related]
31. cAMP/protein kinase A activates cystic fibrosis transmembrane conductance regulator for ATP release from rat skeletal muscle during low pH or contractions. Tu J; Lu L; Cai W; Ballard HJ PLoS One; 2012; 7(11):e50157. PubMed ID: 23226244 [TBL] [Abstract][Full Text] [Related]
32. VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCε-dependent manner. Alshafie W; Chappe FG; Li M; Anini Y; Chappe VM Am J Physiol Cell Physiol; 2014 Jul; 307(1):C107-19. PubMed ID: 24788249 [TBL] [Abstract][Full Text] [Related]
33. Carvedilol binding to β2-adrenergic receptors inhibits CFTR-dependent anion secretion in airway epithelial cells. Peitzman ER; Zaidman NA; Maniak PJ; O'Grady SM Am J Physiol Lung Cell Mol Physiol; 2016 Jan; 310(1):L50-8. PubMed ID: 26566905 [TBL] [Abstract][Full Text] [Related]
34. Disabled-2 protein facilitates assembly polypeptide-2-independent recruitment of cystic fibrosis transmembrane conductance regulator to endocytic vesicles in polarized human airway epithelial cells. Cihil KM; Ellinger P; Fellows A; Stolz DB; Madden DR; Swiatecka-Urban A J Biol Chem; 2012 Apr; 287(18):15087-99. PubMed ID: 22399289 [TBL] [Abstract][Full Text] [Related]
35. Increased diffusional mobility of CFTR at the plasma membrane after deletion of its C-terminal PDZ binding motif. Haggie PM; Stanton BA; Verkman AS J Biol Chem; 2004 Feb; 279(7):5494-500. PubMed ID: 14660592 [TBL] [Abstract][Full Text] [Related]
37. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1. Lobo MJ; Amaral MD; Zaccolo M; Farinha CM J Cell Sci; 2016 Jul; 129(13):2599-612. PubMed ID: 27206858 [TBL] [Abstract][Full Text] [Related]
38. Cystic fibrosis transmembrane conductance regulator activation is reduced in the small intestine of Na+/H+ exchanger 3 regulatory factor 1 (NHERF-1)- but Not NHERF-2-deficient mice. Broere N; Hillesheim J; Tuo B; Jorna H; Houtsmuller AB; Shenolikar S; Weinman EJ; Donowitz M; Seidler U; de Jonge HR; Hogema BM J Biol Chem; 2007 Dec; 282(52):37575-84. PubMed ID: 17947234 [TBL] [Abstract][Full Text] [Related]
39. Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction. Raghuram V; Mak DO; Foskett JK Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1300-5. PubMed ID: 11158634 [TBL] [Abstract][Full Text] [Related]