BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 12621041)

  • 1. Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4.
    Lin X; Liang M; Liang YY; Brunicardi FC; Melchior F; Feng XH
    J Biol Chem; 2003 May; 278(21):18714-9. PubMed ID: 12621041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling.
    Lee PS; Chang C; Liu D; Derynck R
    J Biol Chem; 2003 Jul; 278(30):27853-63. PubMed ID: 12740389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repression of Smad4 transcriptional activity by SUMO modification.
    Long J; Wang G; He D; Liu F
    Biochem J; 2004 Apr; 379(Pt 1):23-9. PubMed ID: 14750902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4.
    Lin X; Liang M; Liang YY; Brunicardi FC; Feng XH
    J Biol Chem; 2003 Aug; 278(33):31043-8. PubMed ID: 12813045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway.
    Xu J; Attisano L
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4820-5. PubMed ID: 10781087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential ubiquitination defines the functional status of the tumor suppressor Smad4.
    Morén A; Hellman U; Inada Y; Imamura T; Heldin CH; Moustakas A
    J Biol Chem; 2003 Aug; 278(35):33571-82. PubMed ID: 12794086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor-derived C-terminal mutations of Smad4 with decreased DNA binding activity and enhanced intramolecular interaction.
    Kuang C; Chen Y
    Oncogene; 2004 Feb; 23(5):1021-9. PubMed ID: 14647410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4.
    Chang CC; Lin DY; Fang HI; Chen RH; Shih HM
    J Biol Chem; 2005 Mar; 280(11):10164-73. PubMed ID: 15637079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming growth factor-beta-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4.
    Ohshima T; Shimotohno K
    J Biol Chem; 2003 Dec; 278(51):50833-42. PubMed ID: 14514699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity.
    Xiao Z; Latek R; Lodish HF
    Oncogene; 2003 Feb; 22(7):1057-69. PubMed ID: 12592392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes.
    Liu F; Pouponnot C; Massagué J
    Genes Dev; 1997 Dec; 11(23):3157-67. PubMed ID: 9389648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases.
    Morén A; Imamura T; Miyazono K; Heldin CH; Moustakas A
    J Biol Chem; 2005 Jun; 280(23):22115-23. PubMed ID: 15817471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.
    Poncelet AC; de Caestecker MP; Schnaper HW
    Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DPC4 (SMAD4) mediates transforming growth factor-beta1 (TGF-beta1) induced growth inhibition and transcriptional response in breast tumour cells.
    de Winter JP; Roelen BA; ten Dijke P; van der Burg B; van den Eijnden-van Raaij AJ
    Oncogene; 1997 Apr; 14(16):1891-9. PubMed ID: 9150356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Smad4 sumoylation and transforming growth factor-beta signaling by protein inhibitor of activated STAT1.
    Liang M; Melchior F; Feng XH; Lin X
    J Biol Chem; 2004 May; 279(22):22857-65. PubMed ID: 15028714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells.
    Peng B; Fleming JB; Breslin T; Grau AM; Fojioka S; Abbruzzese JL; Evans DB; Ayers D; Wathen K; Wu T; Robertson KD; Chiao PJ
    Clin Cancer Res; 2002 Nov; 8(11):3628-38. PubMed ID: 12429655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein.
    Yingling JM; Datto MB; Wong C; Frederick JP; Liberati NT; Wang XF
    Mol Cell Biol; 1997 Dec; 17(12):7019-28. PubMed ID: 9372933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smad3 inhibits transforming growth factor-beta and activin signaling by competing with Smad4 for FAST-2 binding.
    Nagarajan RP; Liu J; Chen Y
    J Biol Chem; 1999 Oct; 274(44):31229-35. PubMed ID: 10531318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling.
    Souchelnytskyi S; Tamaki K; Engström U; Wernstedt C; ten Dijke P; Heldin CH
    J Biol Chem; 1997 Oct; 272(44):28107-15. PubMed ID: 9346966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling.
    Hanyu A; Ishidou Y; Ebisawa T; Shimanuki T; Imamura T; Miyazono K
    J Cell Biol; 2001 Dec; 155(6):1017-27. PubMed ID: 11739411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.