These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 12621074)
1. In vitro genotoxic effects of different combinations of cobalt and metallic carbide particles. De Boeck M; Lombaert N; De Backer S; Finsy R; Lison D; Kirsch-Volders M Mutagenesis; 2003 Mar; 18(2):177-86. PubMed ID: 12621074 [TBL] [Abstract][Full Text] [Related]
2. Comparative evaluation of the in vitro micronucleus test and the alkaline single cell gel electrophoresis assay for the detection of DNA damaging agents: genotoxic effects of cobalt powder, tungsten carbide and cobalt-tungsten carbide. Van Goethem F; Lison D; Kirsch-Volders M Mutat Res; 1997 Aug; 392(1-2):31-43. PubMed ID: 9269329 [TBL] [Abstract][Full Text] [Related]
3. In vitro genotoxic effects of hard metal particles assessed by alkaline single cell gel and elution assays. Anard D; Kirsch-Volders M; Elhajouji A; Belpaeme K; Lison D Carcinogenesis; 1997 Jan; 18(1):177-84. PubMed ID: 9054604 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the apoptogenic potential of hard metal dust (WC-Co), tungsten carbide and metallic cobalt. Lombaert N; De Boeck M; Decordier I; Cundari E; Lison D; Kirsch-Volders M Toxicol Lett; 2004 Dec; 154(1-2):23-34. PubMed ID: 15475175 [TBL] [Abstract][Full Text] [Related]
5. Hard-metal (WC-Co) particles trigger a signaling cascade involving p38 MAPK, HIF-1α, HMOX1, and p53 activation in human PBMC. Lombaert N; Castrucci E; Decordier I; Van Hummelen P; Kirsch-Volders M; Cundari E; Lison D Arch Toxicol; 2013 Feb; 87(2):259-68. PubMed ID: 23052192 [TBL] [Abstract][Full Text] [Related]
6. In vivo genotoxicity of hard metal dust: induction of micronuclei in rat type II epithelial lung cells. De Boeck M; Hoet P; Lombaert N; Nemery B; Kirsch-Volders M; Lison D Carcinogenesis; 2003 Nov; 24(11):1793-800. PubMed ID: 12949052 [TBL] [Abstract][Full Text] [Related]
7. Influence of hOGG1, XRCC1 and XRCC3 genotypes on biomarkers of genotoxicity in workers exposed to cobalt or hard metal dusts. Mateuca R; Aka PV; De Boeck M; Hauspie R; Kirsch-Volders M; Lison D Toxicol Lett; 2005 Apr; 156(2):277-88. PubMed ID: 15737490 [TBL] [Abstract][Full Text] [Related]
8. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays. Moche H; Chevalier D; Barois N; Lorge E; Claude N; Nesslany F Toxicol Sci; 2014 Jan; 137(1):125-34. PubMed ID: 24085191 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of the acute lung toxicity of pure cobalt powder and cobalt-tungsten carbide mixture in rat. Lasfargues G; Lison D; Maldague P; Lauwerys R Toxicol Appl Pharmacol; 1992 Jan; 112(1):41-50. PubMed ID: 1733047 [TBL] [Abstract][Full Text] [Related]
10. Absence of significant genotoxicity in lymphocytes and urine from workers exposed to moderate levels of cobalt-containing dust: a cross-sectional study. De Boeck M; Lardau S; Buchet JP; Kirsch-Volders M; Lison D Environ Mol Mutagen; 2000; 36(2):151-60. PubMed ID: 11013414 [TBL] [Abstract][Full Text] [Related]
11. The interaction of cobalt metal with different carbides and other mineral particles on mouse peritoneal macrophages. Lison D; Lauwerys R Toxicol In Vitro; 1995 Jun; 9(3):341-7. PubMed ID: 20650096 [TBL] [Abstract][Full Text] [Related]
12. Physicochemical mechanism of the interaction between cobalt metal and carbide particles to generate toxic activated oxygen species. Lison D; Carbonnelle P; Mollo L; Lauwerys R; Fubini B Chem Res Toxicol; 1995 Jun; 8(4):600-6. PubMed ID: 7548741 [TBL] [Abstract][Full Text] [Related]
13. In vitro expression of hard metal dust (WC-Co)--responsive genes in human peripheral blood mononucleated cells. Lombaert N; Lison D; Van Hummelen P; Kirsch-Volders M Toxicol Appl Pharmacol; 2008 Mar; 227(2):299-312. PubMed ID: 18078969 [TBL] [Abstract][Full Text] [Related]
14. Genotoxicity of tungsten carbide-cobalt (WC-Co) nanoparticles in vitro: mechanisms-of-action studies. Moche H; Chevalier D; Vezin H; Claude N; Lorge E; Nesslany F Mutat Res Genet Toxicol Environ Mutagen; 2015 Feb; 779():15-22. PubMed ID: 25813722 [TBL] [Abstract][Full Text] [Related]
15. Comparative evaluation of particle properties, formation of reactive oxygen species and genotoxic potential of tungsten carbide based nanoparticles in vitro. Kühnel D; Scheffler K; Wellner P; Meißner T; Potthoff A; Busch W; Springer A; Schirmer K J Hazard Mater; 2012 Aug; 227-228():418-26. PubMed ID: 22698683 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the role of reactive oxygen species in the interactive toxicity of carbide-cobalt mixtures on macrophages in culture. Lison D; Lauwerys R Arch Toxicol; 1993; 67(5):347-51. PubMed ID: 8396391 [TBL] [Abstract][Full Text] [Related]
17. Study of the mechanism responsible for the elective toxicity of tungsten carbide-cobalt powder toward macrophages. Lison D; Lauwerys R Toxicol Lett; 1992 Apr; 60(2):203-10. PubMed ID: 1570634 [TBL] [Abstract][Full Text] [Related]
18. Tungsten carbide-cobalt particles activate Nrf2 and its downstream target genes in JB6 cells possibly by ROS generation. Zhang XD; Zhao J; Bowman L; Shi X; Castranova V; Ding M J Environ Pathol Toxicol Oncol; 2010; 29(1):31-40. PubMed ID: 20528745 [TBL] [Abstract][Full Text] [Related]
19. The delayed lung responses to single and repeated intratracheal administration of pure cobalt and hard metal powder in the rat. Lasfargues G; Lardot C; Delos M; Lauwerys R; Lison D Environ Res; 1995 May; 69(2):108-21. PubMed ID: 8608770 [TBL] [Abstract][Full Text] [Related]
20. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells. Ding M; Kisin ER; Zhao J; Bowman L; Lu Y; Jiang B; Leonard S; Vallyathan V; Castranova V; Murray AR; Fadeel B; Shvedova AA Toxicol Appl Pharmacol; 2009 Dec; 241(3):260-8. PubMed ID: 19747498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]