These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 12622072)

  • 1. Analysis of human two-dimension target-aiming movement.
    Liu W; Yuan XG; Wang LG; Liu ZQ; Wang R; Kang WY
    Space Med Med Eng (Beijing); 2002 Dec; 15(6):397-401. PubMed ID: 12622072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human movement characteristics of target acquisition.
    Liu W; Yuan XG; Wang LG; Liu ZQ; Wang R
    Space Med Med Eng (Beijing); 2001 Oct; 14(5):313-7. PubMed ID: 11842845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target dimension affects 1/f noise in aiming.
    Valdez AB; Amazeen EL
    Nonlinear Dynamics Psychol Life Sci; 2009 Oct; 13(4):369-92. PubMed ID: 19781136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can human movement analysis contribute to usability understanding?
    Belda-Lois JM; de-Rosario H; Pons R; Poveda R; Morón A; Porcar R; García AC; Gómez A
    Hum Mov Sci; 2010 Aug; 29(4):529-41. PubMed ID: 20580455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manual control in space--research on perceptual-motor functions under zero gravity condition.
    Tada A; Suematsu S; Okabe M
    Biol Sci Space; 2001 Oct; 15 Suppl():S84-90. PubMed ID: 12101353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative model of the human-machine interaction and multi-task performance: a strategy function and the unity model paradigm.
    Phillips CA; Repperger DW; Kinsler R; Bharwani G; Kender D
    Comput Biol Med; 2007 Sep; 37(9):1259-71. PubMed ID: 17316596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the primary impulse of spatially-constrained video-aiming movements.
    Tinjust D; Proteau L
    Hum Mov Sci; 2009 Apr; 28(2):155-68. PubMed ID: 19128849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Off-line experiments and analysis of independent brain--computer interface].
    Chen Q; Peng H; Jiang C; Feng H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):478-82. PubMed ID: 16856372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knobology in use: an experimental evaluation of ergonomics recommendations.
    Overgård KI; Fostervold KI; Bjelland HV; Hoff T
    Ergonomics; 2007 May; 50(5):694-705. PubMed ID: 17454088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reference frame conversions for repeated arm movements.
    Sorrento GU; Henriques DY
    J Neurophysiol; 2008 Jun; 99(6):2968-84. PubMed ID: 18400956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Transformation of kinematic characteristics of a precise movement after change in a spatial task].
    Vasil'eva ON
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(5):618-28. PubMed ID: 17147203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force control strategies while driving electric powered wheelchairs with isometric and movement-sensing joysticks.
    Dicianno BE; Spaeth DM; Cooper RA; Fitzgerald SG; Boninger ML; Brown KW
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):144-50. PubMed ID: 17436887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive user interfaces in complex supervisory tasks.
    Yen GG; Acay D
    ISA Trans; 2009 Apr; 48(2):196-205. PubMed ID: 19084225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic analysis of goal-directed aims made against early and late perturbations: an investigation of the relative influence of two online control processes.
    Grierson LE; Elliott D
    Hum Mov Sci; 2008 Dec; 27(6):839-56. PubMed ID: 18768232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Letting thoughts take wing.
    Jorgensen C; Wheeler K
    Aerosp Am; 2002 Mar; 40(3):33-7. PubMed ID: 11898824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.