These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12622152)

  • 21. Calcium released by photolysis of DM-nitrophen stimulates transmitter release at squid giant synapse.
    Delaney KR; Zucker RS
    J Physiol; 1990 Jul; 426():473-98. PubMed ID: 1977904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium requirement for efficient phagocytosis by Dictyostelium discoideum.
    Yuan A; Siu CH; Chia CP
    Cell Calcium; 2001 Apr; 29(4):229-38. PubMed ID: 11243931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca2+ and voltage inactivate Ca2+ channels in guinea-pig ventricular myocytes through independent mechanisms.
    Hadley RW; Lederer WJ
    J Physiol; 1991 Dec; 444():257-68. PubMed ID: 1668348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-photon activation of caged calcium with submicron, submillisecond resolution.
    Brown EB; Webb WW
    Methods Enzymol; 1998; 291():356-80. PubMed ID: 9661159
    [No Abstract]   [Full Text] [Related]  

  • 25. Crafting new cages.
    Li WH
    Nat Methods; 2006 Jan; 3(1):13-5. PubMed ID: 16369546
    [No Abstract]   [Full Text] [Related]  

  • 26. Calcium-induced calcium release and gap junctions mediate large-scale calcium waves in olfactory ensheathing cells in situ.
    Stavermann M; Meuth P; Doengi M; Thyssen A; Deitmer JW; Lohr C
    Cell Calcium; 2015 Aug; 58(2):215-25. PubMed ID: 26091864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcium-dependent plateau potentials in a crab stomatogastric ganglion motor neuron. II. Calcium-activated slow inward current.
    Zhang B; Wootton JF; Harris-Warrick RM
    J Neurophysiol; 1995 Nov; 74(5):1938-46. PubMed ID: 8592187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical review of the methods used to measure the apparent dissociation constant and ligand purity in Ca2+ and Mg2+ buffer solutions.
    McGuigan JA; Kay JW; Elder HY
    Prog Biophys Mol Biol; 2006 Nov; 92(3):333-70. PubMed ID: 16887174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ca(2+) Binding and Transport Studied with Ca(2+)/EGTA Buffers and (45)Ca(2+).
    Sehgal P; Olesen C; Møller JV
    Methods Mol Biol; 2016; 1377():261-6. PubMed ID: 26695038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca(2+)-dependent inactivation of Ca2+ current in Aplysia neurons: kinetic studies using photolabile Ca2+ chelators.
    Fryer MW; Zucker RS
    J Physiol; 1993 May; 464():501-28. PubMed ID: 8229815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flash photolysis using a light emitting diode: an efficient, compact, and affordable solution.
    Bernardinelli Y; Haeberli C; Chatton JY
    Cell Calcium; 2005 Jun; 37(6):565-72. PubMed ID: 15862347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium buffering and protection from excitotoxic cell death by exogenous calbindin-D28k in HEK 293 cells.
    Rintoul GL; Raymond LA; Baimbridge KG
    Cell Calcium; 2001 Apr; 29(4):277-87. PubMed ID: 11243935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ca-induced Ca release from the SR of barnacle myofibrillar bundles, triggered by the photorelease of calcium ions from caged calcium.
    Lea TJ; Ashley CC
    Adv Exp Med Biol; 1992; 311():433-4. PubMed ID: 1529785
    [No Abstract]   [Full Text] [Related]  

  • 34. Comparison between measured and calculated ionised concentrations in Mg2+ /ATP, Mg2+ /EDTA and Ca2+ /EGTA buffers; influence of changes in temperature, pH and pipetting errors on the ionised concentrations.
    McGuigan JA; Kay JW; Elder HY; Lüthi D
    Magnes Res; 2007 Mar; 20(1):72-81. PubMed ID: 17536492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-lasting potentiation and depression without presynaptic activity.
    Neveu D; Zucker RS
    J Neurophysiol; 1996 May; 75(5):2157-60. PubMed ID: 8734612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An organometallic derivative of a BAPTA ligand: towards electrochemically controlled cation release in biocompatible media.
    Bhattacharyya KX; Boubekeur-Lecaque L; Tapsoba I; Maisonhaute E; Schöllhorn B; Amatore C
    Chem Commun (Camb); 2011 May; 47(18):5199-201. PubMed ID: 21445454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of L-type calcium current in mammalian ventricular myocytes by photolysis of caged calcium.
    Bates SE; Gurney AM
    Adv Exp Med Biol; 1992; 311():385-6. PubMed ID: 1326866
    [No Abstract]   [Full Text] [Related]  

  • 38. Light-triggered cross-linking of alginates with caged Ca2+.
    Cui J; Wang M; Zheng Y; Rodríguez Muñiz GM; del Campo A
    Biomacromolecules; 2013 May; 14(5):1251-6. PubMed ID: 23517470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ca2+-dependent interaction of BAPTA with phospholipids.
    Rousset M; Cens T; Vanmau N; Charnet P
    FEBS Lett; 2004 Oct; 576(1-2):41-5. PubMed ID: 15474007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light-controlled gene expression in yeast using photocaged Cu
    Kusen PM; Wandrey G; Krewald V; Holz M; Berstenhorst SMZ; Büchs J; Pietruszka J
    J Biotechnol; 2017 Sep; 258():117-125. PubMed ID: 28455204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.