These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 12622823)

  • 1. Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate.
    Doan T; Aymerich S
    Mol Microbiol; 2003 Mar; 47(6):1709-21. PubMed ID: 12622823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon.
    Ludwig H; Homuth G; Schmalisch M; Dyka FM; Hecker M; Stülke J
    Mol Microbiol; 2001 Jul; 41(2):409-22. PubMed ID: 11489127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of the effector-binding domain of repressor Central glycolytic gene Regulator from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates.
    Rezácová P; Kozísek M; Moy SF; Sieglová I; Joachimiak A; Machius M; Otwinowski Z
    Mol Microbiol; 2008 Aug; 69(4):895-910. PubMed ID: 18554327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor.
    Doan T; Martin L; Zorrilla S; Chaix D; Aymerich S; Labesse G; Declerck N
    Proteins; 2008 Jun; 71(4):2038-50. PubMed ID: 18186488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fructose-1,6-bisphosphate acts both as an inducer and as a structural cofactor of the central glycolytic genes repressor (CggR).
    Zorrilla S; Chaix D; Ortega A; Alfonso C; Doan T; Margeat E; Rivas G; Aymerich S; Declerck N; Royer CA
    Biochemistry; 2007 Dec; 46(51):14996-5008. PubMed ID: 18052209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the glycolytic gapA operon in Bacillus subtilis: differential syntheses of proteins encoded by the operon.
    Meinken C; Blencke HM; Ludwig H; Stülke J
    Microbiology (Reading); 2003 Mar; 149(Pt 3):751-761. PubMed ID: 12634343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation.
    Ludwig H; Rebhan N; Blencke HM; Merzbacher M; Stülke J
    Mol Microbiol; 2002 Jul; 45(2):543-53. PubMed ID: 12123463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of noncovalent mass spectrometry and traveling wave ion mobility spectrometry reveals sugar-induced conformational changes of central glycolytic genes repressor/DNA complex.
    Atmanene C; Chaix D; Bessin Y; Declerck N; Van Dorsselaer A; Sanglier-Cianferani S
    Anal Chem; 2010 May; 82(9):3597-605. PubMed ID: 20361740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducer-modulated cooperative binding of the tetrameric CggR repressor to operator DNA.
    Zorrilla S; Doan T; Alfonso C; Margeat E; Ortega A; Rivas G; Aymerich S; Royer CA; Declerck N
    Biophys J; 2007 May; 92(9):3215-27. PubMed ID: 17293407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of the role of CggR (central glycolytic gene regulator) in Lactobacillus plantarum by transcriptome analysis.
    Rud I; Naterstad K; Bongers RS; Molenaar D; Kleerebezem M; Axelsson L
    Microb Biotechnol; 2011 May; 4(3):345-56. PubMed ID: 21375718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon.
    Galinier A; Deutscher J; Martin-Verstraete I
    J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K; Kodoi Y; Satomura T; Fujita Y
    J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the interaction between the flux-signaling metabolite fructose-1,6-bisphosphate and the bacterial transcription factors CggR and Cra.
    Bley Folly B; Ortega AD; Hubmann G; Bonsing-Vedelaar S; Wijma HJ; van der Meulen P; Milias-Argeitis A; Heinemann M
    Mol Microbiol; 2018 Aug; 109(3):278-290. PubMed ID: 29923648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A; Schau M; Chen Y; Hulett FM
    J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the Bacillus subtilis W23 xylose utilization operon: interaction of the Xyl repressor with the xyl operator and the inducer xylose.
    Gärtner D; Degenkolb J; Ripperger JA; Allmansberger R; Hillen W
    Mol Gen Genet; 1992 Apr; 232(3):415-22. PubMed ID: 1588910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon catabolite control of the metabolic network in Bacillus subtilis.
    Fujita Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite repression of dra-nupC-pdp operon expression in Bacillus subtilis.
    Zeng X; Galinier A; Saxild HH
    Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2901-2908. PubMed ID: 11065368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the kduID operon of Bacillus subtilis by the KdgR repressor and the ccpA gene: identification of two KdgR-binding sites within the kdgR-kduI intergenic region.
    Lin JS; Shaw GC
    Microbiology (Reading); 2007 Mar; 153(Pt 3):701-710. PubMed ID: 17322190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catabolite repression of the citST two-component system in Bacillus subtilis.
    Repizo GD; Blancato VS; Sender PD; Lolkema J; Magni C
    FEMS Microbiol Lett; 2006 Jul; 260(2):224-31. PubMed ID: 16842348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.