These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12622848)

  • 41. Melatonin in relation to physiology in adult humans.
    Cagnacci A
    J Pineal Res; 1996 Nov; 21(4):200-13. PubMed ID: 8989718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [The hypothalamic suprachiasmatic nucleus and pineal gland in the circadian rhythmic organization of mammals].
    Zhou XJ; Yu GD; Yin QZ
    Sheng Li Ke Xue Jin Zhan; 2001 Apr; 32(2):116-20. PubMed ID: 12545879
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Melatonin inhibits Arg-vasopressin release via MT(2) receptor in the suprachiasmatic nucleus-slice culture of rats.
    Isobe Y; Torii T; Nishino H
    Brain Res; 2001 Jan; 889(1-2):214-9. PubMed ID: 11166706
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The melatonin antagonist luzindole protects retinal photoreceptors from light damage in the rat.
    Sugawara T; Sieving PA; Iuvone PM; Bush RA
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2458-65. PubMed ID: 9804154
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel non-indolic melatonin receptor agonists differentially entrain endogenous melatonin rhythm and increase its amplitude.
    Drijfhout WJ; de Vries JB; Homan EJ; Brons HF; Copinga S; Gruppen G; Beresford IJ; Hagan RM; Grol CJ; Westerink BH
    Eur J Pharmacol; 1999 Oct; 382(3):157-66. PubMed ID: 10556666
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mammalian melatonin receptors: molecular biology and signal transduction.
    von Gall C; Stehle JH; Weaver DR
    Cell Tissue Res; 2002 Jul; 309(1):151-62. PubMed ID: 12111545
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ontogeny of pineal melatonin rhythm in rats under 12:12-hr and 14:14-hr light:dark conditions.
    Laakso ML; Alila A; Hätönen T; Mustanoja SM
    J Pineal Res; 1996 Oct; 21(3):155-64. PubMed ID: 8981260
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies of the renal action of melatonin: evidence that the effects are mediated by 37 kDa receptors of the Mel1a subtype localized primarily to the basolateral membrane of the proximal tubule.
    Song Y; Chan CW; Brown GM; Pang SF; Silverman M
    FASEB J; 1997 Jan; 11(1):93-100. PubMed ID: 9034171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Circadian variations of melatonin binding sites in the goldfish brain.
    Iigo M; Furukawa K; Tabata M; Aida K
    Neurosci Lett; 2003 Aug; 347(1):49-52. PubMed ID: 12865139
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The circadian clock, light/dark cycle and melatonin are differentially involved in the expression of daily and photoperiodic variations in mt(1) melatonin receptors in the Siberian and Syrian hamsters.
    Schuster C; Gauer F; Malan A; Recio J; Pévet P; Masson-Pévet M
    Neuroendocrinology; 2001 Jul; 74(1):55-68. PubMed ID: 11435758
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Daily variations in melatonin receptor density of rat pars tuberalis and suprachiasmatic nuclei are distinctly regulated.
    Gauer F; Masson-Pevet M; Stehle J; Pevet P
    Brain Res; 1994 Mar; 641(1):92-8. PubMed ID: 8019855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Melatonin receptors as therapeutic targets in the suprachiasmatic nucleus.
    Pévet P
    Expert Opin Ther Targets; 2016 Oct; 20(10):1209-18. PubMed ID: 27082492
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prospects of the clinical utilization of melatonin.
    Bubenik GA; Blask DE; Brown GM; Maestroni GJ; Pang SF; Reiter RJ; Viswanathan M; Zisapel N
    Biol Signals Recept; 1998; 7(4):195-219. PubMed ID: 9730580
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of L-NAME-induced hypertension on melatonin receptors and melatonin levels in the pineal gland and the peripheral organs of rats.
    Benova M; Herichova I; Stebelova K; Paulis L; Krajcirovicova K; Simko F; Zeman M
    Hypertens Res; 2009 Apr; 32(4):242-7. PubMed ID: 19262491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Environmental control of biological rhythms: effects on development, fertility and metabolism.
    Amaral FG; Castrucci AM; Cipolla-Neto J; Poletini MO; Mendez N; Richter HG; Sellix MT
    J Neuroendocrinol; 2014 Sep; 26(9):603-12. PubMed ID: 24617798
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Melatonin: a clock-output, a clock-input.
    Stehle JH; von Gall C; Korf HW
    J Neuroendocrinol; 2003 Apr; 15(4):383-9. PubMed ID: 12622838
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Melatonin normalizes the re-entrainment of senescence accelerated mice (SAM) to a new light-dark cycle.
    Shibata S; Asai M; Oshima I; Ikeda M; Yoshioka T
    Adv Exp Med Biol; 1999; 460():261-70. PubMed ID: 10810521
    [No Abstract]   [Full Text] [Related]  

  • 58. Roles of nocturnal melatonin and the pineal gland in modulation of water-immersion restraint stress-induced gastric mucosal lesions in rats.
    Otsuka M; Kato K; Murai I; Asai S; Iwasaki A; Arakawa Y
    J Pineal Res; 2001 Mar; 30(2):82-6. PubMed ID: 11270483
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A marked diurnal rhythm of melatonin ML1A receptor mRNA expression in the suprachiasmatic nucleus.
    Neu JM; Niles LP
    Brain Res Mol Brain Res; 1997 Oct; 49(1-2):303-6. PubMed ID: 9387893
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GABA release from suprachiasmatic nucleus terminals is necessary for the light-induced inhibition of nocturnal melatonin release in the rat.
    Kalsbeek A; Cutrera RA; Van Heerikhuize JJ; Van Der Vliet J; Buijs RM
    Neuroscience; 1999; 91(2):453-61. PubMed ID: 10366002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.