BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12623014)

  • 1. Crystal structure of human riboflavin kinase reveals a beta barrel fold and a novel active site arch.
    Karthikeyan S; Zhou Q; Mseeh F; Grishin NV; Osterman AL; Zhang H
    Structure; 2003 Mar; 11(3):265-73. PubMed ID: 12623014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of Schizosaccharomyces pombe riboflavin kinase reveals a novel ATP and riboflavin-binding fold.
    Bauer S; Kemter K; Bacher A; Huber R; Fischer M; Steinbacher S
    J Mol Biol; 2003 Mar; 326(5):1463-73. PubMed ID: 12595258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand binding-induced conformational changes in riboflavin kinase: structural basis for the ordered mechanism.
    Karthikeyan S; Zhou Q; Osterman AL; Zhang H
    Biochemistry; 2003 Nov; 42(43):12532-8. PubMed ID: 14580199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key residues at the riboflavin kinase catalytic site of the bifunctional riboflavin kinase/FMN adenylyltransferase from Corynebacterium ammoniagenes.
    Serrano A; Frago S; Herguedas B; Martínez-Júlvez M; Velázquez-Campoy A; Medina M
    Cell Biochem Biophys; 2013 Jan; 65(1):57-68. PubMed ID: 22892871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the synthesis of FMN in prokaryotic organisms.
    Herguedas B; Lans I; Sebastián M; Hermoso JA; Martínez-Júlvez M; Medina M
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2526-42. PubMed ID: 26627660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligomeric state in the crystal structure of modular FAD synthetase provides insights into its sequential catalysis in prokaryotes.
    Herguedas B; Martínez-Júlvez M; Frago S; Medina M; Hermoso JA
    J Mol Biol; 2010 Jul; 400(2):218-30. PubMed ID: 20471397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis.
    Gu Y; Reshetnikova L; Li Y; Wu Y; Yan H; Singh S; Ji X
    J Mol Biol; 2002 Jun; 319(3):779-89. PubMed ID: 12054870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of key residues at the flavin mononucleotide (FMN):adenylyltransferase catalytic site of the bifunctional riboflavin kinase/flavin adenine dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes.
    Serrano A; Frago S; Velázquez-Campoy A; Medina M
    Int J Mol Sci; 2012 Nov; 13(11):14492-517. PubMed ID: 23203077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human riboflavin kinase: Species-specific traits in the biosynthesis of the FMN cofactor.
    Anoz-Carbonell E; Rivero M; Polo V; Velázquez-Campoy A; Medina M
    FASEB J; 2020 Aug; 34(8):10871-10886. PubMed ID: 32649804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily.
    Zhou T; Daugherty M; Grishin NV; Osterman AL; Zhang H
    Structure; 2000 Dec; 8(12):1247-57. PubMed ID: 11188689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography.
    Kraft L; Sprenger GA; Lindqvist Y
    J Mol Biol; 2002 May; 318(4):1057-69. PubMed ID: 12054802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase from Salmonella typhimurium determined to 2.3 A resolution,
    Thompson TB; Thomas MG; Escalante-Semerena JC; Rayment I
    Biochemistry; 1998 May; 37(21):7686-95. PubMed ID: 9601028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Ingelman M; Ramaswamy S; Nivière V; Fontecave M; Eklund H
    Biochemistry; 1999 Jun; 38(22):7040-9. PubMed ID: 10353815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An FMN hydrolase is fused to a riboflavin kinase homolog in plants.
    Sandoval FJ; Roje S
    J Biol Chem; 2005 Nov; 280(46):38337-45. PubMed ID: 16183635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavin reductase P: structure of a dimeric enzyme that reduces flavin.
    Tanner JJ; Lei B; Tu SC; Krause KL
    Biochemistry; 1996 Oct; 35(42):13531-9. PubMed ID: 8885832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Biosynthesis of Flavin Cofactors in Listeria monocytogenes.
    Sebastián M; Arilla-Luna S; Bellalou J; Yruela I; Medina M
    J Mol Biol; 2019 Jul; 431(15):2762-2776. PubMed ID: 31132361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the Citrobacter freundii dihydroxyacetone kinase reveals an eight-stranded alpha-helical barrel ATP-binding domain.
    Siebold C; Arnold I; Garcia-Alles LF; Baumann U; Erni B
    J Biol Chem; 2003 Nov; 278(48):48236-44. PubMed ID: 12966101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-induced structural changes in adenosine 5'-phosphosulfate kinase from Penicillium chrysogenum.
    Lansdon EB; Segel IH; Fisher AJ
    Biochemistry; 2002 Nov; 41(46):13672-80. PubMed ID: 12427029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular insights into the mechanism of substrate binding and catalysis of bifunctional FAD synthetase from Staphylococcus aureus.
    Lohithakshan A; Narayanasamy R; Potteth US; Keshava S; Nagaraja V; Usharani D; Kumar R
    Biochimie; 2021 Mar; 182():217-227. PubMed ID: 33516756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.