These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 126232)
1. A re-examination of the cleavage of fibrinogen and fibrin by plasmin. Ferguson EW; Fretto LJ; McKee PA J Biol Chem; 1975 Sep; 250(18):7210-8. PubMed ID: 126232 [TBL] [Abstract][Full Text] [Related]
2. Localization of the alpha-chain cross-link acceptor sites of human fibrin. Fretto LJ; Ferguson EW; Steinman HM; McKee PA J Biol Chem; 1978 Apr; 253(7):2184-95. PubMed ID: 632262 [TBL] [Abstract][Full Text] [Related]
3. Plasmic degradation of human fibrinogen. IV. Identification of subunit chain remnants in fragment Y. Furlan M; Seelich T; Beck EA Biochim Biophys Acta; 1975 Jul; 400(1):112-20. PubMed ID: 125108 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the physicochemical properties of fragment D derivatives of fibrinogen and fragment D-D of cross-linked fibrin. Marder VJ; Budzynski AZ; Barlow GH Biochim Biophys Acta; 1976 Mar; 427(1):1-14. PubMed ID: 130927 [TBL] [Abstract][Full Text] [Related]
5. Characterization of an apparently lower molecular weight gamma-chain variant in fibrinogen Kyoto I. The replacement of gamma-asparagine 308 by lysine which causes accelerated cleavage of fragment D1 by plasmin and the generation of a new plasmin cleavage site. Yoshida N; Terukina S; Okuma M; Moroi M; Aoki N; Matsuda M J Biol Chem; 1988 Sep; 263(27):13848-56. PubMed ID: 2971046 [TBL] [Abstract][Full Text] [Related]
6. Characterization of fragment E from fibrinogen and cross-linked fibrin. Slade CL; Pizzo SV; Taylor LM; Steinman HM; McKee PA J Biol Chem; 1976 Mar; 251(6):1591-6. PubMed ID: 815259 [TBL] [Abstract][Full Text] [Related]
7. Primary structure of human fibrinogen and fibrin. Isolation and partial characterization of chains of fragment D. Collen D; Kudryk B; Hessel B; Blombäck B J Biol Chem; 1975 Aug; 250(15):5808-17. PubMed ID: 125279 [TBL] [Abstract][Full Text] [Related]
8. Factor XIIIa cross-linking of the Marburg fibrin: formation of alpham.gamman-heteromultimers and the alpha-chain-linked albumin. gamma complex, and disturbed protofibril assembly resulting in acquisition of plasmin resistance relevant to thrombophila. Sugo T; Nakamikawa C; Takebe M; Kohno I; Egbring R; Matsuda M Blood; 1998 May; 91(9):3282-8. PubMed ID: 9558384 [TBL] [Abstract][Full Text] [Related]
9. Localization of segments essential for polymerization and for calcium binding in the gamma-chain of human fibrinogen. Váradi A; Scheraga HA Biochemistry; 1986 Feb; 25(3):519-28. PubMed ID: 2937452 [TBL] [Abstract][Full Text] [Related]
10. Demonstration of a large molecular weight variant of the gamma chain of normal human plasma fibrinogen. Francis CW; Marder VJ; Martin SE J Biol Chem; 1980 Jun; 255(12):5599-604. PubMed ID: 6445903 [TBL] [Abstract][Full Text] [Related]
11. Characterization of peptides cleaved by plasmin from the C-terminal polymerization domain of human fibrinogen. Southan C; Thompson E; Panico M; Etienne T; Morris HR; Lane DA J Biol Chem; 1985 Oct; 260(24):13095-101. PubMed ID: 2932434 [TBL] [Abstract][Full Text] [Related]
12. Plasmic degradation of human fibrinogen. III. Molecular model of the plasmin-resistant disulfide knot in monomeric fragment D. Furlan M; Kemp G; Beck EA Biochim Biophys Acta; 1975 Jul; 400(1):95-111. PubMed ID: 125109 [TBL] [Abstract][Full Text] [Related]
13. Structure of alpha-polymer from in vitro and in vivo highly cross-linked human fibrin. Fretto LJ; McKee PA J Biol Chem; 1978 Sep; 253(18):6614-22. PubMed ID: 150419 [TBL] [Abstract][Full Text] [Related]
14. Calcium modulates plasmin cleavage of the fibrinogen D fragment gamma chain N-terminus: mapping of monoclonal antibody J88B to a plasmin sensitive domain of the gamma chain. Odrljin TM; Rybarczyk BJ; Francis CW; Lawrence SO; Hamaguchi M; Simpson-Haidaris PJ Biochim Biophys Acta; 1996 Nov; 1298(1):69-77. PubMed ID: 8948490 [TBL] [Abstract][Full Text] [Related]
15. Soluble high-molecular-weight E fragments in the plasmin-induced degradation products of cross-linked human fibrin. Gaffney PJ; Lane DA; Brasher M Clin Sci Mol Med; 1975 Aug; 49(2):149-56. PubMed ID: 125178 [TBL] [Abstract][Full Text] [Related]
16. Localization of a fibrin polymerization site. Olexa SA; Budzynski AZ J Biol Chem; 1981 Apr; 256(7):3544-9. PubMed ID: 6451630 [TBL] [Abstract][Full Text] [Related]
17. Binding phenomena of isolated unique plasmic degradation products of human cross-linked fibrin. Olexa SA; Budzynski AZ J Biol Chem; 1979 Jun; 254(11):4925-32. PubMed ID: 155698 [TBL] [Abstract][Full Text] [Related]
18. Characterization of an abnormal fibrinogen Osaka V with the replacement of gamma-arginine 375 by glycine. The lack of high affinity calcium binding to D-domains and the lack of protective effect of calcium on fibrinolysis. Yoshida N; Hirata H; Morigami Y; Imaoka S; Matsuda M; Yamazumi K; Asakura S J Biol Chem; 1992 Feb; 267(4):2753-9. PubMed ID: 1733971 [TBL] [Abstract][Full Text] [Related]
19. Immunologic identification of the cleavage products from the A alpha- and B beta-chains in the early stages of plasmin digestion of fibrinogen. Liu CY; Sobel JH; Weitz JI; Kaplan KL; Nossel HL Thromb Haemost; 1986 Aug; 56(1):100-6. PubMed ID: 2946092 [TBL] [Abstract][Full Text] [Related]
20. Fibrinogen St. Gallen I (gamma 292 Gly--> Val): evidence for structural alterations causing defective polymerization and fibrinogenolysis. Stucki B; Schmutz P; Schmid L; Haeberli A; Lämmle B; Furlan M Thromb Haemost; 1999 Feb; 81(2):268-74. PubMed ID: 10064005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]