These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 12624737)

  • 21. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro.
    Asanuma N; Iwamoto M; Hino T
    J Dairy Sci; 1999 Apr; 82(4):780-7. PubMed ID: 10212465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characteristics of a skatole-producing Lactobacillus sp. from the bovine rumen.
    Yokoyama MT; Carlson JR; Holdeman LV
    Appl Environ Microbiol; 1977 Dec; 34(6):837-42. PubMed ID: 563703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of nitroethane and nitroethanol on the production of indole and 3-methylindole (skatole) from bacteria in swine feces by gas chromatography.
    Beier RC; Anderson RC; Krueger NA; Edrington TS; Callaway TR; Nisbet DJ
    J Environ Sci Health B; 2009 Aug; 44(6):613-20. PubMed ID: 20183070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Duration of inhibition of 3-methylindole production by monensin.
    Honeyfield DC; Carlson JR; Nocerini MR; Breeze RG
    J Anim Sci; 1985 Jan; 60(1):226-31. PubMed ID: 3972743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Klebsiella to Salmonella gene transfer within rumen protozoa: implications for antibiotic resistance and rumen defaunation.
    McCuddin ZP; Carlson SA; Rasmussen MA; Franklin SK
    Vet Microbiol; 2006 May; 114(3-4):275-84. PubMed ID: 16423473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of indole and 3-methylindole in plasma and rumen fluid from cattle with fog fever or after L-tryptophan administration.
    Mackenzie A; Heaney RK; Fenwick GR
    Res Vet Sci; 1977 Jul; 23(1):47-50. PubMed ID: 905654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isotrichid protozoa influence conversion of glucose to glycogen and other microbial products.
    Hall MB
    J Dairy Sci; 2011 Sep; 94(9):4589-602. PubMed ID: 21854932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of tyrosine and other aromatic compounds from phenylalanine by rumen microorganisms.
    Khan RI; Onodera R; Amin MR; Mohammed N
    Amino Acids; 1999; 17(4):335-46. PubMed ID: 10707763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of salinomycin and vitamin B(6) on in vitro metabolism of phenylalanine and its related compounds by ruminal bacteria, protozoa and their mixture.
    Amin MR; Onodera R
    J Gen Appl Microbiol; 1998 Feb; 44(1):1-9. PubMed ID: 12501287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple continuous culture system for rumen microbial digestion study and effects of defaunation and dilution rates.
    Fuchigami M; Senshu T; Horiguchi M
    J Dairy Sci; 1989 Nov; 72(11):3070-8. PubMed ID: 2625496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induction of pulmonary edema and emphysema in goats by intraruminal administration of 3-methylindole.
    Dickinson EO; Yokoyama MT; Carlson JR; Bradley BJ
    Am J Vet Res; 1976 Jun; 37(6):667-72. PubMed ID: 937787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ruminal tryptophan-utilizing bacteria degrade ergovaline from tall fescue seed extract.
    Harlow BE; Goodman JP; Lynn BC; Flythe MD; Ji H; Aiken GE
    J Anim Sci; 2017 Feb; 95(2):980-988. PubMed ID: 28380578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of protozoa to lysine synthesis in the in vitro rumen microbial ecosystem.
    Onodera R
    Appl Environ Microbiol; 1986 Jun; 51(6):1350-1. PubMed ID: 3089154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats.
    Cantalapiedra-Hijar G; Yáñez-Ruiz DR; Martín-García AI; Molina-Alcaide E
    J Anim Sci; 2009 Feb; 87(2):622-31. PubMed ID: 18952730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro metabolism of 2,2'-diaminopimelic acid from gram-positive and gram-negative bacterial cells by ruminal protozoa and bacteria.
    Denholm AM; Ling JR
    Appl Environ Microbiol; 1989 Jan; 55(1):212-8. PubMed ID: 2495759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosynthesis of threonine from homoserine by mixed rumen microorganisms: an in vitro study.
    Or-Rashid MM; Onodera R; Wadud S
    Curr Microbiol; 2001 Feb; 42(2):73-7. PubMed ID: 11136125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disappearance of nine monoterpenes exposed in vitro to the rumen microflora of dairy goats: effects of inoculum source, redox potential, and vancomycin.
    Malecky M; Broudiscou LP
    J Anim Sci; 2009 Apr; 87(4):1366-73. PubMed ID: 19098243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DDT- 14 C-metabolism by rumen bacteria and protozoa in vitro.
    Kutches AJ; Church DC
    J Dairy Sci; 1971 Apr; 54(4):540-3. PubMed ID: 5570091
    [No Abstract]   [Full Text] [Related]  

  • 39. Induction of pulmonary edema and emphysema in cattle and goats with 3-methylindole.
    Carlson JR; Yokoyama MT; Dickinson EO
    Science; 1972 Apr; 176(4032):298-9. PubMed ID: 5019784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3-Methylindole (skatole) and indole production by mixed populations of pig fecal bacteria.
    Jensen MT; Cox RP; Jensen BB
    Appl Environ Microbiol; 1995 Aug; 61(8):3180-4. PubMed ID: 7487051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.