These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 12624737)

  • 41. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms.
    Guo YQ; Liu JX; Lu Y; Zhu WY; Denman SE; McSweeney CS
    Lett Appl Microbiol; 2008 Nov; 47(5):421-6. PubMed ID: 19146532
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relative contributions of ruminal bacteria and protozoa to the degradation of protein in vitro.
    Hino T; Russell JB
    J Anim Sci; 1987 Jan; 64(1):261-70. PubMed ID: 3818489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro metabolism of phenylalanine by ruminal bacteria, protozoa, and their mixture.
    Amin MR; Onodera R
    J Gen Appl Microbiol; 1997 Feb; 43(1):1-7. PubMed ID: 12501347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bovicin HC5 inhibits wasteful amino acid degradation by mixed ruminal bacteria in vitro.
    Lima JR; Ribon Ade O; Russell JB; Mantovani HC
    FEMS Microbiol Lett; 2009 Mar; 292(1):78-84. PubMed ID: 19191869
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of concentrate replacement by feed blocks on ruminal fermentation and microbial growth in goats and single-flow continuous-culture fermenters.
    Molina-Alcaide E; Pascual MR; Cantalapiedra-Hijar G; Morales-García EY; Martín-García AI
    J Anim Sci; 2009 Apr; 87(4):1321-33. PubMed ID: 19098232
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Degradation of terpenes and terpenoids from Mediterranean rangelands by mixed rumen bacteria in vitro.
    Malecky M; Albarello H; Broudiscou LP
    Animal; 2012 Apr; 6(4):612-6. PubMed ID: 22436277
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accumulation of reserve carbohydrate by rumen protozoa and bacteria in competition for glucose.
    Denton BL; Diese LE; Firkins JL; Hackmann TJ
    Appl Environ Microbiol; 2015 Mar; 81(5):1832-8. PubMed ID: 25548053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro transformation of ochratoxin A by animal microbioal floras.
    Galtier P; Alvinerie M
    Ann Rech Vet; 1976; 7(1):91-8. PubMed ID: 984716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of dipeptidyl peptidase inhibitors on growth, peptidase activity, and ammonia production by ruminal microorganisms.
    Wang H; McKain N; Walker ND; Wallace RJ
    Curr Microbiol; 2004 Aug; 49(2):115-22. PubMed ID: 15297916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of salinomycin and vitamin B(6) on the in vitro synthesis of lysine from the stereoisomers of 2,6-diaminopimelic acid by mixed rumen protozoa, bacteria, and their mixture.
    El-Waziry AM
    J Gen Appl Microbiol; 1997 Apr; 43(2):109-114. PubMed ID: 12501342
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen.
    Russell JB; Muck RE; Weimer PJ
    FEMS Microbiol Ecol; 2009 Feb; 67(2):183-97. PubMed ID: 19120465
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of ciliate protozoa in the lysis of methanogenic archaea in rumen fluid.
    Newbold CJ; Ushida K; Morvan B; Fonty G; Jouany JP
    Lett Appl Microbiol; 1996 Dec; 23(6):421-5. PubMed ID: 8987902
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro production of lysine from 2,2'-diaminopimelic acid by rumen protozoa.
    Onodera R; Takashima H; Ling JR
    J Protozool; 1991; 38(4):421-5. PubMed ID: 1787428
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Binding of radiolabeled monensin and lasalocid to ruminal microorganisms and feed.
    Chow JM; Van Kessel JA; Russell JB
    J Anim Sci; 1994 Jun; 72(6):1630-5. PubMed ID: 8071190
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of exogenous cellulase supplementation on microbial growth and ruminal fermentation of a high-forage diet in Rusitec fermenters.
    Giraldo LA; Tejido ML; Ranilla MJ; Carro MD
    J Anim Sci; 2007 Aug; 85(8):1962-70. PubMed ID: 17468414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The antimicrobial effects of hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria.
    Flythe MD
    Lett Appl Microbiol; 2009 Jun; 48(6):712-7. PubMed ID: 19413813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Indolic tryptophan metabolism in uraemia.
    Byrd DJ; Berthold HW; Trefz KF; Kochen W; Gilli G; Schärer K; Schüler HW; Asbach HW
    Proc Eur Dial Transplant Assoc; 1976; 12():347-54. PubMed ID: 935125
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A protease additive increases fermentation of alfalfa diets by mixed ruminal microorganisms in vitro.
    Colombatto D; Beauchemin KA
    J Anim Sci; 2009 Mar; 87(3):1097-105. PubMed ID: 19028863
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A lack of predatory interaction between rumen ciliate protozoa and Shiga-toxin producing Escherichia coli.
    Burow LC; Gobius KS; Vanselow BA; Klieve AV
    Lett Appl Microbiol; 2005; 40(2):117-22. PubMed ID: 15644110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.