BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12625019)

  • 21. [Effects of nitrogen application and elevated atmospheric CO2 on electron transport and energy partitioning in flag leaf photosynthesis of wheat].
    Zhang XC; Yu XF; Ma YF
    Ying Yong Sheng Tai Xue Bao; 2011 Mar; 22(3):673-80. PubMed ID: 21657023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CO2 and O2 distribution in Rubisco suggests the small subunit functions as a CO2 reservoir.
    van Lun M; Hub JS; van der Spoel D; Andersson I
    J Am Chem Soc; 2014 Feb; 136(8):3165-71. PubMed ID: 24495214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inorganic carbon acquisition in the acid-tolerant alga Chlorella kessleri.
    El-Ansari O; Colman B
    Physiol Plant; 2015 Jan; 153(1):175-82. PubMed ID: 24828745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature.
    Yamori W; Masumoto C; Fukayama H; Makino A
    Plant J; 2012 Sep; 71(6):871-80. PubMed ID: 22563799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An evolution-based analysis scheme to identify CO2/O2 specificity-determining factors for ribulose 1,5-bisphosphate carboxylase/oxygenase.
    Yu GX; Park BH; Chandramohan P; Geist A; Samatova NF
    Protein Eng Des Sel; 2005 Dec; 18(12):589-96. PubMed ID: 16246824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research.
    Ryan MG
    Tree Physiol; 2013 Nov; 33(11):1123-31. PubMed ID: 24300337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inorganic carbon acquisition in some synurophyte algae.
    Bhatti S; Colman B
    Physiol Plant; 2008 May; 133(1):33-40. PubMed ID: 18298411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manipulation of light and CO2 environments of the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation.
    Araya T; Noguchi K; Terashima I
    Plant Cell Environ; 2008 Jan; 31(1):50-61. PubMed ID: 17944816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.
    Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ
    Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii.
    Yamano T; Tsujikawa T; Hatano K; Ozawa S; Takahashi Y; Fukuzawa H
    Plant Cell Physiol; 2010 Sep; 51(9):1453-68. PubMed ID: 20660228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation.
    Rae BD; Long BM; Whitehead LF; Förster B; Badger MR; Price GD
    J Mol Microbiol Biotechnol; 2013; 23(4-5):300-7. PubMed ID: 23920493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The carboxylase activity of Rubisco and the photosynthetic performance in aquatic plants.
    Beer S; Sand-Jensen K; Madsen TV; Nielsen SL
    Oecologia; 1991 Sep; 87(3):429-434. PubMed ID: 28313273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effects of simulated elevation of atmospheric CO2 concentration on the physiological features of spring phytoplankton in Taihu Lake].
    Zhao XH; Tang LS; Shi XL; Yang Z; Kong FX
    Huan Jing Ke Xue; 2013 Jun; 34(6):2126-33. PubMed ID: 23947023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion.
    Terashima I; Hanba YT; Tazoe Y; Vyas P; Yano S
    J Exp Bot; 2006; 57(2):343-54. PubMed ID: 16356943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions.
    Moroney JV; Jungnick N; Dimario RJ; Longstreth DJ
    Photosynth Res; 2013 Nov; 117(1-3):121-31. PubMed ID: 23771683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why?
    Ji X; Verspagen JMH; Stomp M; Huisman J
    J Exp Bot; 2017 Jun; 68(14):3815-3828. PubMed ID: 28207058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH.
    Ota M; Takenaka M; Sato Y; Smith RL; Inomata H
    Biotechnol Prog; 2015; 31(4):1053-7. PubMed ID: 25919350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The mechanisms of plant photosynthetic acclimation to elevated CO2 concentration].
    Zhang DY; Xu DQ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):463-70. PubMed ID: 18349499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low soil temperature inhibits the effect of high nutrient supply on photosynthetic response to elevated carbon dioxide concentration in white birch seedlings.
    Ambebe TF; Dang QL; Li J
    Tree Physiol; 2010 Feb; 30(2):234-43. PubMed ID: 20007132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing photosynthetic CO
    Li D; Dong H; Cao X; Wang W; Li C
    Nat Commun; 2023 Sep; 14(1):5337. PubMed ID: 37660048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.