These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
473 related articles for article (PubMed ID: 12625723)
1. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Martens PJ; Bryant SJ; Anseth KS Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723 [TBL] [Abstract][Full Text] [Related]
2. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. Bryant SJ; Anseth KS J Biomed Mater Res A; 2003 Jan; 64(1):70-9. PubMed ID: 12483698 [TBL] [Abstract][Full Text] [Related]
3. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Bryant SJ; Bender RJ; Durand KL; Anseth KS Biotechnol Bioeng; 2004 Jun; 86(7):747-55. PubMed ID: 15162450 [TBL] [Abstract][Full Text] [Related]
5. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering. Dadsetan M; Szatkowski JP; Yaszemski MJ; Lu L Biomacromolecules; 2007 May; 8(5):1702-9. PubMed ID: 17419584 [TBL] [Abstract][Full Text] [Related]
6. Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. Rice MA; Anseth KS J Biomed Mater Res A; 2004 Sep; 70(4):560-8. PubMed ID: 15307160 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels. Bryant SJ; Arthur JA; Anseth KS Acta Biomater; 2005 Mar; 1(2):243-52. PubMed ID: 16701801 [TBL] [Abstract][Full Text] [Related]
8. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Brink KS; Yang PJ; Temenoff JS Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068 [TBL] [Abstract][Full Text] [Related]
9. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering. Neumann AJ; Quinn T; Bryant SJ Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026 [TBL] [Abstract][Full Text] [Related]
10. Cross-linking density alters early metabolic activities in chondrocytes encapsulated in poly(ethylene glycol) hydrogels and cultured in the rotating wall vessel. Villanueva I; Klement BJ; von Deutsch D; Bryant SJ Biotechnol Bioeng; 2009 Mar; 102(4):1242-50. PubMed ID: 18949761 [TBL] [Abstract][Full Text] [Related]
11. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks. Hudalla GA; Eng TS; Murphy WL Biomacromolecules; 2008 Mar; 9(3):842-9. PubMed ID: 18288800 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair. Jin R; Moreira Teixeira LS; Krouwels A; Dijkstra PJ; van Blitterswijk CA; Karperien M; Feijen J Acta Biomater; 2010 Jun; 6(6):1968-77. PubMed ID: 20025999 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Du JZ; Sun TM; Weng SQ; Chen XS; Wang J Biomacromolecules; 2007 Nov; 8(11):3375-81. PubMed ID: 17902689 [TBL] [Abstract][Full Text] [Related]
14. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Park H; Temenoff JS; Holland TA; Tabata Y; Mikos AG Biomaterials; 2005 Dec; 26(34):7095-103. PubMed ID: 16023196 [TBL] [Abstract][Full Text] [Related]
15. Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels. Shah NM; Pool MD; Metters AT Biomacromolecules; 2006 Nov; 7(11):3171-7. PubMed ID: 17096548 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Kim J; Lee KW; Hefferan TE; Currier BL; Yaszemski MJ; Lu L Biomacromolecules; 2008 Jan; 9(1):149-57. PubMed ID: 18072747 [TBL] [Abstract][Full Text] [Related]
17. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Bryant SJ; Anseth KS; Lee DA; Bader DL J Orthop Res; 2004 Sep; 22(5):1143-9. PubMed ID: 15304291 [TBL] [Abstract][Full Text] [Related]
18. Encapsulation of chondrocytes in injectable alkali-treated collagen gels prepared using poly(ethylene glycol)-based 4-armed star polymer. Taguchi T; Xu L; Kobayashi H; Taniguchi A; Kataoka K; Tanaka J Biomaterials; 2005 Apr; 26(11):1247-52. PubMed ID: 15475054 [TBL] [Abstract][Full Text] [Related]
19. Physiological osmolarities do not enhance long-term tissue synthesis in chondrocyte-laden degradable poly(ethylene glycol) hydrogels. Skaalure SC; Radhakrishnan SM; Bryant SJ J Biomed Mater Res A; 2015 Jun; 103(6):2186-92. PubMed ID: 25205522 [TBL] [Abstract][Full Text] [Related]
20. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Hwang Y; Sangaj N; Varghese S Tissue Eng Part A; 2010 Oct; 16(10):3033-41. PubMed ID: 20486791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]