These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 12626020)

  • 1. Feed-forward synchronization: propagation of temporal patterns along the retinothalamocortical pathway.
    Neuenschwander S; Castelo-Branco M; Baron J; Singer W
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1869-76. PubMed ID: 12626020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat.
    Castelo-Branco M; Neuenschwander S; Singer W
    J Neurosci; 1998 Aug; 18(16):6395-410. PubMed ID: 9698331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus.
    Neuenschwander S; Singer W
    Nature; 1996 Feb; 379(6567):728-32. PubMed ID: 8602219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
    Fisher TG; Alitto HJ; Usrey WM
    J Neurosci; 2017 Jan; 37(1):226-235. PubMed ID: 28053044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticothalamic interactions in the transfer of visual information.
    Sillito AM; Jones HE
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1739-52. PubMed ID: 12626008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gamma and infra-slow oscillations shape neuronal firing in the rat subcortical visual system.
    Chrobok L; Palus-Chramiec K; Jeczmien-Lazur JS; Blasiak T; Lewandowski MH
    J Physiol; 2018 Jun; 596(11):2229-2250. PubMed ID: 29577327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.
    Bastos AM; Briggs F; Alitto HJ; Mangun GR; Usrey WM
    J Neurosci; 2014 May; 34(22):7639-44. PubMed ID: 24872567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo.
    Weliky M; Katz LC
    Science; 1999 Jul; 285(5427):599-604. PubMed ID: 10417392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracortical connections are not required for oscillatory activity in the visual cortex.
    Ghose GM; Freeman RD
    Vis Neurosci; 1997; 14(6):963R-979R. PubMed ID: 9447698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex.
    Sillito AM; Jones HE; Gerstein GL; West DC
    Nature; 1994 Jun; 369(6480):479-82. PubMed ID: 8202137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual spatial summation in macaque geniculocortical afferents.
    Sceniak MP; Chatterjee S; Callaway EM
    J Neurophysiol; 2006 Dec; 96(6):3474-84. PubMed ID: 16928793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precisely correlated firing in cells of the lateral geniculate nucleus.
    Alonso JM; Usrey WM; Reid RC
    Nature; 1996 Oct; 383(6603):815-9. PubMed ID: 8893005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracortical connections are not required for oscillatory activity in the visual cortex.
    Ghose GM; Freeman RD
    Vis Neurosci; 1997; 14(5):963-79. PubMed ID: 9364732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Very slow brain potential fluctuations (< 0.5 Hz) in visual thalamus and striate cortex after their successive electrical stimulation in lightly anesthetized rats.
    Filippov IV
    Brain Res; 2005 Dec; 1066(1-2):179-86. PubMed ID: 16324687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory.
    Dan Y; Atick JJ; Reid RC
    J Neurosci; 1996 May; 16(10):3351-62. PubMed ID: 8627371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity.
    Lin IC; Xing D; Shapley R
    J Comput Neurosci; 2012 Dec; 33(3):559-72. PubMed ID: 22684587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple model of retina-LGN transmission.
    Casti A; Hayot F; Xiao Y; Kaplan E
    J Comput Neurosci; 2008 Apr; 24(2):235-52. PubMed ID: 17763931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of response timing and direction selectivity in cat visual thalamus and cortex.
    Saul AB; Feidler JC
    J Neurosci; 2002 Apr; 22(7):2945-55. PubMed ID: 11923459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of primate LGN cells to moving stimuli involve a constant background modulation by feedback from area MT.
    Jones HE; Andolina IM; Grieve KL; Wang W; Salt TE; Cudeiro J; Sillito AM
    Neuroscience; 2013 Aug; 246():254-64. PubMed ID: 23644057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.