BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 12626122)

  • 21. Role of redox status on the activation of mitogen-activated protein kinase cascades by NSAIDs.
    Lennon AM; Ramauge M; Pierre M
    Biochem Pharmacol; 2002 Jan; 63(2):163-70. PubMed ID: 11841790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superoxide anions and hydrogen peroxide inhibit proliferation of activated rat stellate cells and induce different modes of cell death.
    Dunning S; Hannivoort RA; de Boer JF; Buist-Homan M; Faber KN; Moshage H
    Liver Int; 2009 Jul; 29(6):922-32. PubMed ID: 19386027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential effects of redox-cycling and arylating quinones on trans-plasma membrane electron transport.
    Tan AS; Berridge MV
    Biofactors; 2008; 34(3):183-90. PubMed ID: 19734119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of the p38 and JNK/SAPK mitogen-activated protein kinase pathways during apoptosis is mediated by a novel retinoid.
    Zhang Y; Huang Y; Rishi AK; Sheikh MS; Shroot B; Reichert U; Dawson M; Poirer G; Fontana JA
    Exp Cell Res; 1999 Feb; 247(1):233-40. PubMed ID: 10047465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fc gamma receptor cross-linking activates p42, p38, and JNK/SAPK mitogen-activated protein kinases in murine macrophages: role for p42MAPK in Fc gamma receptor-stimulated TNF-alpha synthesis.
    Rose DM; Winston BW; Chan ED; Riches DW; Gerwins P; Johnson GL; Henson PM
    J Immunol; 1997 Apr; 158(7):3433-8. PubMed ID: 9120304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Concentration-dependent positive and negative regulation of a MAP kinase by a MAP kinase kinase.
    Kieran MW; Katz S; Vail B; Zon LI; Mayer BJ
    Oncogene; 1999 Nov; 18(48):6647-57. PubMed ID: 10597270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen peroxide-induced activation of SAPK/JNK regulated by phosphatidylinositol 3-kinase in Chinese hamster V79 cells.
    Inanami O; Takahashi K; Yoshito A; Kuwabara M
    Antioxid Redox Signal; 1999; 1(1):113-21. PubMed ID: 11225728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of protein kinase C isoforms protects RAW 264.7 macrophages from nitric oxide-induced apoptosis: involvement of c-Jun N-terminal kinase/stress-activated protein kinase, p38 kinase, and CPP-32 protease pathways.
    Jun CD; Oh CD; Kwak HJ; Pae HO; Yoo JC; Choi BM; Chun JS; Park RK; Chung HT
    J Immunol; 1999 Mar; 162(6):3395-401. PubMed ID: 10092794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Menadione biphasically controls JNK-linked cell death in leukemia Jurkat T cells.
    Ma X; Du J; Nakashima I; Nagase F
    Antioxid Redox Signal; 2002 Jun; 4(3):371-8. PubMed ID: 12215205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: an ESR study.
    Takahashi N; Schreiber J; Fischer V; Mason RP
    Arch Biochem Biophys; 1987 Jan; 252(1):41-8. PubMed ID: 3028260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of oxygen free radicals in thyroid cells and inhibition of thyroid peroxidase.
    Sugawara M; Sugawara Y; Wen K; Giulivi C
    Exp Biol Med (Maywood); 2002 Feb; 227(2):141-6. PubMed ID: 11815678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of intracellular iron levels by oxidative stress implicates a novel role for iron in signal transduction.
    Deb S; Johnson EE; Robalinho-Teixeira RL; Wessling-Resnick M
    Biometals; 2009 Oct; 22(5):855-62. PubMed ID: 19190985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sepiapterin reductase mediates chemical redox cycling in lung epithelial cells.
    Yang S; Jan YH; Gray JP; Mishin V; Heck DE; Laskin DL; Laskin JD
    J Biol Chem; 2013 Jun; 288(26):19221-37. PubMed ID: 23640889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of the SAPK/JNK pathway blocks the stimulatory effects of glutamine on fluid secretion by the Malpighian tubules of Rhodnius prolixus.
    Hazel MH; Christensen RJ; O'Donnell MJ
    J Insect Physiol; 2003 Oct; 49(10):897-906. PubMed ID: 14511822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relative importance of oxidative stress versus arylation in the mechanism of quinone-induced cytotoxicity to platelets.
    Seung SA; Lee JY; Lee MY; Park JS; Chung JH
    Chem Biol Interact; 1998 May; 113(2):133-44. PubMed ID: 9717514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytotoxicity mechanism of two naphthoquinones (menadione and plumbagin) in Saccharomyces cerevisiae.
    Castro FA; Mariani D; Panek AD; Eleutherio EC; Pereira MD
    PLoS One; 2008; 3(12):e3999. PubMed ID: 19098979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 2-Bromo-1,4-naphthoquinone: a potentially improved substitute of menadione in Apatone™ therapy.
    Graciani FS; Ximenes VF
    Braz J Med Biol Res; 2012 Aug; 45(8):701-10. PubMed ID: 22584645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Whole genome analysis of p38 SAPK-mediated gene expression upon stress.
    Ferreiro I; Joaquin M; Islam A; Gomez-Lopez G; Barragan M; Lombardía L; Domínguez O; Pisano DG; Lopez-Bigas N; Nebreda AR; Posas F
    BMC Genomics; 2010 Mar; 11():144. PubMed ID: 20187982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quinones increase gamma-glutamyl transpeptidase expression by multiple mechanisms in rat lung epithelial cells.
    Liu RM; Shi MM; Giulivi C; Forman HJ
    Am J Physiol; 1998 Mar; 274(3):L330-6. PubMed ID: 9530167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells.
    Thor H; Smith MT; Hartzell P; Bellomo G; Jewell SA; Orrenius S
    J Biol Chem; 1982 Oct; 257(20):12419-25. PubMed ID: 6181068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.