These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 12626606)
21. Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord? Cowley KC; Zaporozhets E; Maclean JN; Schmidt BJ J Neurophysiol; 2005 Dec; 94(6):3805-14. PubMed ID: 16120672 [TBL] [Abstract][Full Text] [Related]
22. Developmental expression of nicotinic receptors in the chick and human spinal cord. Keiger CJ; Prevette D; Conroy WG; Oppenheim RW J Comp Neurol; 2003 Jan; 455(1):86-99. PubMed ID: 12454998 [TBL] [Abstract][Full Text] [Related]
23. Basic developmental rules and their implications for epilepsy in the immature brain. Ben-Ari Y Epileptic Disord; 2006 Jun; 8(2):91-102. PubMed ID: 16793570 [TBL] [Abstract][Full Text] [Related]
24. Expression of the glycinergic system during the course of embryonic development in the mouse spinal cord and its co-localization with GABA immunoreactivity. Allain AE; Baïri A; Meyrand P; Branchereau P J Comp Neurol; 2006 Jun; 496(6):832-46. PubMed ID: 16628621 [TBL] [Abstract][Full Text] [Related]
25. Development of locomotor activity induced by NMDA receptor activation in the lumbar spinal cord of the rat fetus studied in vitro. Ozaki S; Yamada T; Iizuka M; Nishimaru H; Kudo N Brain Res Dev Brain Res; 1996 Nov; 97(1):118-25. PubMed ID: 8946060 [TBL] [Abstract][Full Text] [Related]
26. Development and pH sensitivity of the respiratory rhythm of fetal mice in vitro. Eugenín J; von Bernhardi R; Muller KJ; Llona I Neuroscience; 2006 Aug; 141(1):223-31. PubMed ID: 16675136 [TBL] [Abstract][Full Text] [Related]
27. Control of sympathetic, respiratory and somatomotor outflow by an intraspinal pattern generator. Goodchild AK; van Deurzen BT; Hildreth CM; Pilowsky PM Clin Exp Pharmacol Physiol; 2008 Apr; 35(4):447-53. PubMed ID: 18307739 [TBL] [Abstract][Full Text] [Related]
28. Alpha-1 adrenoceptor agonists generate a "fast" NMDA receptor-independent motor rhythm in the neonatal rat spinal cord. Gabbay H; Lev-Tov A J Neurophysiol; 2004 Aug; 92(2):997-1010. PubMed ID: 15084642 [TBL] [Abstract][Full Text] [Related]
29. Basis of changes in left-right coordination of rhythmic motor activity during development in the rat spinal cord. Nakayama K; Nishimaru H; Kudo N J Neurosci; 2002 Dec; 22(23):10388-98. PubMed ID: 12451138 [TBL] [Abstract][Full Text] [Related]
30. Modulation of GABAergic synaptic transmission by terminal nicotinic acetylcholine receptors in the central autonomic nucleus of the neonatal rat spinal cord. Seddik R; Schlichter R; Trouslard J Neuropharmacology; 2006 Jul; 51(1):77-89. PubMed ID: 16678861 [TBL] [Abstract][Full Text] [Related]
31. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons. Thomson LM; Zeng J; Terman GW Neuroscience; 2006 Sep; 141(3):1489-501. PubMed ID: 16750886 [TBL] [Abstract][Full Text] [Related]
32. Generation patterns of immunocytochemically identified cholinergic neurons at autonomic levels of the rat spinal cord. Barber RP; Phelps PE; Vaughn JE J Comp Neurol; 1991 Sep; 311(4):509-19. PubMed ID: 1757600 [TBL] [Abstract][Full Text] [Related]
33. Locomotor pattern in the adult zebrafish spinal cord in vitro. Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928 [TBL] [Abstract][Full Text] [Related]
34. Actions of propofol on substantia gelatinosa neurones in rat spinal cord revealed by in vitro and in vivo patch-clamp recordings. Takazawa T; Furue H; Nishikawa K; Uta D; Takeshima K; Goto F; Yoshimura M Eur J Neurosci; 2009 Feb; 29(3):518-28. PubMed ID: 19222560 [TBL] [Abstract][Full Text] [Related]
35. Presynaptic angiotensin II AT1 receptors enhance inhibitory and excitatory synaptic neurotransmission to motoneurons and other ventral horn neurons in neonatal rat spinal cord. Oz M; Yang KH; O'donovan MJ; Renaud LP J Neurophysiol; 2005 Aug; 94(2):1405-12. PubMed ID: 16061493 [TBL] [Abstract][Full Text] [Related]
36. Acetylcholine controls GABA-, glutamate-, and glycine-dependent giant depolarizing potentials that govern spontaneous motoneuron activity at the onset of synaptogenesis in the mouse embryonic spinal cord. Czarnecki A; Le Corronc H; Rigato C; Le Bras B; Couraud F; Scain AL; Allain AE; Mouffle C; Bullier E; Mangin JM; Branchereau P; Legendre P J Neurosci; 2014 Apr; 34(18):6389-404. PubMed ID: 24790209 [TBL] [Abstract][Full Text] [Related]
37. Modulation of cellular and synaptic variability in the lamprey spinal cord. Parker D; Bevan S J Neurophysiol; 2007 Jan; 97(1):44-56. PubMed ID: 17021027 [TBL] [Abstract][Full Text] [Related]
38. In vivo optical recordings of synaptic transmission and intracellular Ca2+ and Cl- in the superior colliculus of fetal rats. Sakata Y; Fujioka T; Endoh H; Nakamura S Eur J Neurosci; 2006 Mar; 23(6):1405-16. PubMed ID: 16553604 [TBL] [Abstract][Full Text] [Related]
39. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity. Jackson AW; Horinek DF; Boyd MR; McClellan AD J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521 [TBL] [Abstract][Full Text] [Related]
40. N-methyl-D-aspartate triggers neonatal rat hypoglossal motoneurons in vitro to express rhythmic bursting with unusual Mg2+ sensitivity. Sharifullina E; Ostroumov K; Grandolfo M; Nistri A Neuroscience; 2008 Jun; 154(2):804-20. PubMed ID: 18468805 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]