BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 12626626)

  • 1. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A corollary discharge maintains auditory sensitivity during sound production.
    Poulet JF; Hedwig B
    Nature; 2002 Aug; 418(6900):872-6. PubMed ID: 12192409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket.
    Poulet JF; Hedwig B
    J Neurosci; 2003 Jun; 23(11):4717-25. PubMed ID: 12805311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corollary discharge inhibition and audition in the stridulating cricket.
    Poulet JF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Nov; 191(11):979-86. PubMed ID: 16249882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tympanic membrane oscillations and auditory receptor activity in the stridulating cricket Gryllus bimaculatus.
    Poulet JF; Hedwig B
    J Exp Biol; 2001 Apr; 204(Pt 7):1281-93. PubMed ID: 11249838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corollary discharge inhibition of wind-sensitive cercal giant interneurons in the singing field cricket.
    Schöneich S; Hedwig B
    J Neurophysiol; 2015 Jan; 113(1):390-9. PubMed ID: 25318763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets (Teleogryllus oceanicus).
    Faulkes Z; Pollack GS
    J Neurophysiol; 2000 Sep; 84(3):1247-55. PubMed ID: 10979999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state.
    Hedwig B
    J Neurophysiol; 2000 Feb; 83(2):712-22. PubMed ID: 10669487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): intracellular evaluation.
    Navia B; Stout J; Atkins G
    J Exp Zool A Comp Exp Biol; 2003 Mar; 296(1):63-71. PubMed ID: 12589692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identified auditory neurons in the cricket Gryllus rubens: temporal processing in calling song sensitive units.
    Farris HE; Mason AC; Hoy RR
    Hear Res; 2004 Jul; 193(1-2):121-33. PubMed ID: 15219327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of frequency-specific responses of omega neuron 1 in crickets (Teleogryllus oceanicus): a polysynaptic pathway for song?
    Faulkes Z; Pollack GS
    J Exp Biol; 2001 Apr; 204(Pt 7):1295-305. PubMed ID: 11249839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cellular basis of a corollary discharge.
    Poulet JF; Hedwig B
    Science; 2006 Jan; 311(5760):518-22. PubMed ID: 16439660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).
    Ostrowski TD; Stumpner A
    J Comp Neurol; 2010 Aug; 518(15):3101-16. PubMed ID: 20533362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hearing in mole crickets (Orthoptera: Gryllotalpidae) at sonic and ultrasonic frequencies.
    Mason AC; Forrest TG; Hoy RR
    J Exp Biol; 1998 Jun; 201(Pt 12):1967-79. PubMed ID: 9722432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that histamine is the inhibitory transmitter of the auditory interneuron ON1 of crickets.
    Skiebe P; Corrette BJ; Wiese K
    Neurosci Lett; 1990 Aug; 116(3):361-6. PubMed ID: 1978745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pharmacological treatment and photoinactivation on the directional responses of an insect neuron.
    Molina J; Stumpner A
    J Exp Zool A Comp Exp Biol; 2005 Dec; 303(12):1085-103. PubMed ID: 16254919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carrier-dependent temporal processing in an auditory interneuron.
    Sabourin P; Gottlieb H; Pollack GS
    J Acoust Soc Am; 2008 May; 123(5):2910-7. PubMed ID: 18529207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron.
    Marsat G; Pollack GS
    J Neurophysiol; 2004 Aug; 92(2):939-48. PubMed ID: 15044517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.
    Nabatiyan A; Poulet JF; de Polavieja GG; Hedwig B
    J Neurophysiol; 2003 Oct; 90(4):2484-93. PubMed ID: 14534273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central projections of auditory receptor neurons of crickets.
    Imaizumi K; Pollack GS
    J Comp Neurol; 2005 Dec; 493(3):439-47. PubMed ID: 16261528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.