These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 12626644)
1. Chronopharmacology of analgesic effect and its tolerance induced by morphine in mice. Yoshida M; Ohdo S; Takane H; Tomiyoshi Y; Matsuo A; Yukawa E; Higuchi S J Pharmacol Exp Ther; 2003 Jun; 305(3):1200-5. PubMed ID: 12626644 [TBL] [Abstract][Full Text] [Related]
2. High doses of processed Aconiti tuber inhibit the acute but potentiate the chronic antinociception of morphine. Shu H; Hayashida M; Arita H; Huang W; Xiao L; Chiba S; Sekiyama H; Hanaoka K J Ethnopharmacol; 2008 Sep; 119(2):276-83. PubMed ID: 18687394 [TBL] [Abstract][Full Text] [Related]
3. Glucocorticoid hormone regulates the circadian coordination of micro-opioid receptor expression in mouse brainstem. Yoshida M; Koyanagi S; Matsuo A; Fujioka T; To H; Higuchi S; Ohdo S J Pharmacol Exp Ther; 2005 Dec; 315(3):1119-24. PubMed ID: 16109741 [TBL] [Abstract][Full Text] [Related]
4. [Ritanserin prolongs the analgesic effect of morphine and slows the development of tolerance]. Verbitskaia EV; Kudriashova MF Eksp Klin Farmakol; 1997; 60(2):10-3. PubMed ID: 9206558 [TBL] [Abstract][Full Text] [Related]
5. In vivo regulation of mu-opioid receptor density and gene expression in CXBK and outbred Swiss Webster mice. Duttaroy A; Yoburn BC Synapse; 2000 Aug; 37(2):118-24. PubMed ID: 10881033 [TBL] [Abstract][Full Text] [Related]
6. Morphine hyperalgesia in mice is unrelated to opioid activity, analgesia, or tolerance: evidence for multiple diverse hyperalgesic systems. Juni A; Klein G; Kest B Brain Res; 2006 Jan; 1070(1):35-44. PubMed ID: 16409995 [TBL] [Abstract][Full Text] [Related]
7. Attenuation of opioid analgesic tolerance in p75 neurotrophin receptor null mutant mice. Trang T; Koblic P; Kawaja M; Jhamandas K Neurosci Lett; 2009 Feb; 451(1):69-73. PubMed ID: 19114089 [TBL] [Abstract][Full Text] [Related]
8. Differences in tolerance to anti-hyperalgesic effects between chronic treatment with morphine and fentanyl under a state of pain. Imai S; Narita M; Hashimoto S; Nakamura A; Miyoshi K; Nozaki H; Hareyama N; Takagi T; Suzuki M; Narita M; Suzuki T Nihon Shinkei Seishin Yakurigaku Zasshi; 2006 Nov; 26(5-6):183-92. PubMed ID: 17240843 [TBL] [Abstract][Full Text] [Related]
9. Vigabatrin attenuates the development and expression of tolerance to morphine-induced antinociception in mice. Chavooshi B; Saberi M; Pournaghash Tehrani S; Bakhtiarian A; Ahmadiani A; Haghparast A Pharmacol Biochem Behav; 2009 Aug; 93(2):155-9. PubMed ID: 19446576 [TBL] [Abstract][Full Text] [Related]
10. Pharmacological characterization of dihydromorphine, 6-acetyldihydromorphine and dihydroheroin analgesia and their differentiation from morphine. Gilbert AK; Hosztafi S; Mahurter L; Pasternak GW Eur J Pharmacol; 2004 May; 492(2-3):123-30. PubMed ID: 15178355 [TBL] [Abstract][Full Text] [Related]
11. mu-Opioid receptor internalization-dependent and -independent mechanisms of the development of tolerance to mu-opioid receptor agonists: Comparison between etorphine and morphine. Narita M; Suzuki M; Narita M; Niikura K; Nakamura A; Miyatake M; Yajima Y; Suzuki T Neuroscience; 2006; 138(2):609-19. PubMed ID: 16417975 [TBL] [Abstract][Full Text] [Related]
12. Supraspinally administered agmatine prevents the development of supraspinal morphine analgesic tolerance. Kitto KF; Fairbanks CA Eur J Pharmacol; 2006 Apr; 536(1-2):133-7. PubMed ID: 16546161 [TBL] [Abstract][Full Text] [Related]
13. The spinal nitric oxide involved in the inhibitory effect of midazolam on morphine-induced analgesia tolerance. Cao JL; Ding HL; He JH; Zhang LC; Duan SM; Zeng YM Pharmacol Biochem Behav; 2005 Mar; 80(3):493-503. PubMed ID: 15740792 [TBL] [Abstract][Full Text] [Related]
14. Genetic deletion of pleiotrophin leads to disruption of spinal nociceptive transmission: evidence for pleiotrophin modulation of morphine-induced analgesia. Gramage E; Herradon G Eur J Pharmacol; 2010 Nov; 647(1-3):97-102. PubMed ID: 20826137 [TBL] [Abstract][Full Text] [Related]
15. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling. Wang HY; Friedman E; Olmstead MC; Burns LH Neuroscience; 2005; 135(1):247-61. PubMed ID: 16084657 [TBL] [Abstract][Full Text] [Related]
16. Continuous morphine produces more tolerance than intermittent or acute treatment. Dighe SV; Madia PA; Sirohi S; Yoburn BC Pharmacol Biochem Behav; 2009 May; 92(3):537-42. PubMed ID: 19248799 [TBL] [Abstract][Full Text] [Related]
17. Analgesic activity of ZC88, a novel N-type voltage-dependent calcium channel blocker, and its modulation of morphine analgesia, tolerance and dependence. Meng G; Wu N; Zhang C; Su RB; Lu XQ; Liu Y; Yun LH; Zheng JQ; Li J Eur J Pharmacol; 2008 May; 586(1-3):130-8. PubMed ID: 18374913 [TBL] [Abstract][Full Text] [Related]
18. Aquaporin 4 deficiency modulates morphine pharmacological actions. Wu N; Lu XQ; Yan HT; Su RB; Wang JF; Liu Y; Hu G; Li J Neurosci Lett; 2008 Dec; 448(2):221-5. PubMed ID: 18973795 [TBL] [Abstract][Full Text] [Related]
19. Interaction of mu-opioid receptor agonists and antagonists with the analgesic effect of buprenorphine in mice. Kögel B; Christoph T; Strassburger W; Friderichs E Eur J Pain; 2005 Oct; 9(5):599-611. PubMed ID: 16139189 [TBL] [Abstract][Full Text] [Related]
20. Evidence for a role of CaMKIV in the development of opioid analgesic tolerance. Ko SW; Jia Y; Xu H; Yim SJ; Jang DH; Lee YS; Zhao MG; Toyoda H; Wu LJ; Chatila T; Kaang BK; Zhuo M Eur J Neurosci; 2006 Apr; 23(8):2158-68. PubMed ID: 16630062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]