These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12626699)

  • 1. The enzymatic basis of processivity in lambda exonuclease.
    Subramanian K; Rutvisuttinunt W; Scott W; Myers RS
    Nucleic Acids Res; 2003 Mar; 31(6):1585-96. PubMed ID: 12626699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriophage P22 Abc2 protein binds to RecC increases the 5' strand nicking activity of RecBCD and together with lambda bet, promotes Chi-independent recombination.
    Murphy KC
    J Mol Biol; 2000 Feb; 296(2):385-401. PubMed ID: 10669596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the interaction of lambda exonuclease with the ends of DNA.
    Mitsis PG; Kwagh JG
    Nucleic Acids Res; 1999 Aug; 27(15):3057-63. PubMed ID: 10454600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toroidal structure of lambda-exonuclease.
    Kovall R; Matthews BW
    Science; 1997 Sep; 277(5333):1824-7. PubMed ID: 9295273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclease activity is essential for RecBCD recombination in Escherichia coli.
    Jockovich ME; Myers RS
    Mol Microbiol; 2001 Aug; 41(4):949-62. PubMed ID: 11532156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncanonical substrate preference of lambda exonuclease for 5'-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction.
    Wu T; Yang Y; Chen W; Wang J; Yang Z; Wang S; Xiao X; Li M; Zhao M
    Nucleic Acids Res; 2018 Apr; 46(6):3119-3129. PubMed ID: 29490081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time observation of a single DNA digestion by lambda exonuclease under a fluorescence microscope field.
    Matsuura S; Komatsu J; Hirano K; Yasuda H; Takashima K; Katsura S; Mizuno A
    Nucleic Acids Res; 2001 Aug; 29(16):E79. PubMed ID: 11504887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae.
    Chen WY; Ho JW; Huang JD; Watt RM
    BMC Mol Biol; 2011 Apr; 12():16. PubMed ID: 21501469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the Redβ C-terminal domain in complex with λ Exonuclease reveals an unexpected homology with λ Orf and an interaction with Escherichia coli single stranded DNA binding protein.
    Caldwell BJ; Zakharova E; Filsinger GT; Wannier TM; Hempfling JP; Chun-Der L; Pei D; Church GM; Bell CE
    Nucleic Acids Res; 2019 Feb; 47(4):1950-1963. PubMed ID: 30624736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What makes the bacteriophage lambda Red system useful for genetic engineering: molecular mechanism and biological function.
    Poteete AR
    FEMS Microbiol Lett; 2001 Jul; 201(1):9-14. PubMed ID: 11445160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, functional, and evolutionary relationships between lambda-exonuclease and the type II restriction endonucleases.
    Kovall RA; Matthews BW
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):7893-7. PubMed ID: 9653111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of lambda exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity.
    Zhang J; McCabe KA; Bell CE
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11872-7. PubMed ID: 21730170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder.
    van Oijen AM; Blainey PC; Crampton DJ; Richardson CC; Ellenberger T; Xie XS
    Science; 2003 Aug; 301(5637):1235-8. PubMed ID: 12947199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Escherichia coli exonuclease I suggests how processivity is achieved.
    Breyer WA; Matthews BW
    Nat Struct Biol; 2000 Dec; 7(12):1125-8. PubMed ID: 11101894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule DNA digestion by lambda-exonuclease.
    Dapprich J
    Cytometry; 1999 Jul; 36(3):163-8. PubMed ID: 10404963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and crystallization of lambda exonuclease.
    van Oostrum J; White JL; Burnett RM
    Arch Biochem Biophys; 1985 Dec; 243(2):332-7. PubMed ID: 2935081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-dependent pausing of single lambda exonuclease molecules.
    Perkins TT; Dalal RV; Mitsis PG; Block SM
    Science; 2003 Sep; 301(5641):1914-8. PubMed ID: 12947034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-stranded heteroduplex intermediates in lambda Red homologous recombination.
    Maresca M; Erler A; Fu J; Friedrich A; Zhang Y; Stewart AF
    BMC Mol Biol; 2010 Jul; 11():54. PubMed ID: 20670401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity of the p53-associated 3'-5' exonuclease.
    Skalski V; Lin ZY; Choi BY; Brown KR
    Oncogene; 2000 Jul; 19(29):3321-9. PubMed ID: 10918588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymerase and exonuclease activities in herpes simplex virus type 1 DNA polymerase are not highly coordinated.
    Vashishtha AK; Kuchta RD
    Biochemistry; 2015 Jan; 54(2):240-9. PubMed ID: 25517265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.