BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 12626699)

  • 1. The enzymatic basis of processivity in lambda exonuclease.
    Subramanian K; Rutvisuttinunt W; Scott W; Myers RS
    Nucleic Acids Res; 2003 Mar; 31(6):1585-96. PubMed ID: 12626699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriophage P22 Abc2 protein binds to RecC increases the 5' strand nicking activity of RecBCD and together with lambda bet, promotes Chi-independent recombination.
    Murphy KC
    J Mol Biol; 2000 Feb; 296(2):385-401. PubMed ID: 10669596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the interaction of lambda exonuclease with the ends of DNA.
    Mitsis PG; Kwagh JG
    Nucleic Acids Res; 1999 Aug; 27(15):3057-63. PubMed ID: 10454600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toroidal structure of lambda-exonuclease.
    Kovall R; Matthews BW
    Science; 1997 Sep; 277(5333):1824-7. PubMed ID: 9295273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclease activity is essential for RecBCD recombination in Escherichia coli.
    Jockovich ME; Myers RS
    Mol Microbiol; 2001 Aug; 41(4):949-62. PubMed ID: 11532156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncanonical substrate preference of lambda exonuclease for 5'-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction.
    Wu T; Yang Y; Chen W; Wang J; Yang Z; Wang S; Xiao X; Li M; Zhao M
    Nucleic Acids Res; 2018 Apr; 46(6):3119-3129. PubMed ID: 29490081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time observation of a single DNA digestion by lambda exonuclease under a fluorescence microscope field.
    Matsuura S; Komatsu J; Hirano K; Yasuda H; Takashima K; Katsura S; Mizuno A
    Nucleic Acids Res; 2001 Aug; 29(16):E79. PubMed ID: 11504887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae.
    Chen WY; Ho JW; Huang JD; Watt RM
    BMC Mol Biol; 2011 Apr; 12():16. PubMed ID: 21501469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the Redβ C-terminal domain in complex with λ Exonuclease reveals an unexpected homology with λ Orf and an interaction with Escherichia coli single stranded DNA binding protein.
    Caldwell BJ; Zakharova E; Filsinger GT; Wannier TM; Hempfling JP; Chun-Der L; Pei D; Church GM; Bell CE
    Nucleic Acids Res; 2019 Feb; 47(4):1950-1963. PubMed ID: 30624736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What makes the bacteriophage lambda Red system useful for genetic engineering: molecular mechanism and biological function.
    Poteete AR
    FEMS Microbiol Lett; 2001 Jul; 201(1):9-14. PubMed ID: 11445160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, functional, and evolutionary relationships between lambda-exonuclease and the type II restriction endonucleases.
    Kovall RA; Matthews BW
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):7893-7. PubMed ID: 9653111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of lambda exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity.
    Zhang J; McCabe KA; Bell CE
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11872-7. PubMed ID: 21730170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder.
    van Oijen AM; Blainey PC; Crampton DJ; Richardson CC; Ellenberger T; Xie XS
    Science; 2003 Aug; 301(5637):1235-8. PubMed ID: 12947199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Escherichia coli exonuclease I suggests how processivity is achieved.
    Breyer WA; Matthews BW
    Nat Struct Biol; 2000 Dec; 7(12):1125-8. PubMed ID: 11101894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule DNA digestion by lambda-exonuclease.
    Dapprich J
    Cytometry; 1999 Jul; 36(3):163-8. PubMed ID: 10404963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and crystallization of lambda exonuclease.
    van Oostrum J; White JL; Burnett RM
    Arch Biochem Biophys; 1985 Dec; 243(2):332-7. PubMed ID: 2935081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-dependent pausing of single lambda exonuclease molecules.
    Perkins TT; Dalal RV; Mitsis PG; Block SM
    Science; 2003 Sep; 301(5641):1914-8. PubMed ID: 12947034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-stranded heteroduplex intermediates in lambda Red homologous recombination.
    Maresca M; Erler A; Fu J; Friedrich A; Zhang Y; Stewart AF
    BMC Mol Biol; 2010 Jul; 11():54. PubMed ID: 20670401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity of the p53-associated 3'-5' exonuclease.
    Skalski V; Lin ZY; Choi BY; Brown KR
    Oncogene; 2000 Jul; 19(29):3321-9. PubMed ID: 10918588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymerase and exonuclease activities in herpes simplex virus type 1 DNA polymerase are not highly coordinated.
    Vashishtha AK; Kuchta RD
    Biochemistry; 2015 Jan; 54(2):240-9. PubMed ID: 25517265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.