BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 12627636)

  • 1. Biodegradation during contaminant transport in porous media: 6. Impact of sorption on coupled degradation-transport behavior.
    Famisan GB; Brusseau ML
    Environ Toxicol Chem; 2003 Mar; 22(3):510-7. PubMed ID: 12627636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of the simulated diagenesis on sorption of naphthalene and 1-naphthol by soil organic matter and its precursors.
    Guo X; Wang X; Zhou X; Ding X; Fu B; Tao S; Xing B
    Environ Sci Technol; 2013; 47(21):12148-55. PubMed ID: 24041398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation during contaminant transport in porous media: 4. Impact of microbial lag and bacterial cell growth.
    Sandrin SK; Jordan FL; Maier RM; Brusseau ML
    J Contam Hydrol; 2001 Aug; 50(3-4):225-42. PubMed ID: 11523326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naphthalene and phenanthrene sorption to very low organic content diatomaceous earth: modeling implications for microbial bioavailability.
    Mittal M; Rockne KJ
    Chemosphere; 2009 Feb; 74(8):1134-44. PubMed ID: 19058832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential bioavailability of soil-sorbed naphthalene to two bacterial species.
    Guerin WF; Boyd SA
    Appl Environ Microbiol; 1992 Apr; 58(4):1142-52. PubMed ID: 1599237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition.
    Guo X; Wang X; Zhou X; Kong X; Tao S; Xing B
    Environ Sci Technol; 2012 Jul; 46(13):7252-9. PubMed ID: 22676433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of non-desorbable naphthalene in soils.
    Park JH; Zhao X; Voice TC
    Environ Sci Technol; 2001 Jul; 35(13):2734-40. PubMed ID: 11452600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent prediction of naphthalene transport and biodegradation in soil with a mathematical model.
    Ahn IS; Ghiorse WC; Lion LW; Shuler ML
    Biotechnol Bioeng; 1999 Oct; 65(1):65-75. PubMed ID: 10440672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonideal transport of reactive contaminants in heterogeneous porous media: 7. distributed-domain model incorporating immiscible-liquid dissolution and rate-limited sorption/desorption.
    Zhang Z; Brusseau ML
    J Contam Hydrol; 2004 Oct; 74(1-4):83-103. PubMed ID: 15358488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil.
    Hwang G; Park SR; Lee CH; Ahn IS; Yoon YJ; Mhin BJ
    J Hazard Mater; 2009 Dec; 172(1):491-3. PubMed ID: 19656625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioavailability and biodegradation kinetics protocol for organic pollutant compounds to achieve environmentally acceptable endpoints during bioremediation.
    Tabak HH; Govind R
    Ann N Y Acad Sci; 1997 Nov; 829():36-61. PubMed ID: 9472313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures.
    Chen B; Chen Z
    Chemosphere; 2009 Jun; 76(1):127-33. PubMed ID: 19282020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling of diffusion-limited retardation of contaminants in hydraulically and lithologically nonuniform media.
    Liedl R; Ptak T
    J Contam Hydrol; 2003 Nov; 66(3-4):239-59. PubMed ID: 14568401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of naphthalene derivatives to soils from a long-term field experiment.
    Novoszad M; Gerzabek MH; Haberhauer G; Jakusch M; Lischka H; Tunega D; Kirchmann H
    Chemosphere; 2005 Apr; 59(5):639-47. PubMed ID: 15792661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of two naphthoic acids to goethite surface under flow through conditions.
    Hanna K; Boily JF
    Environ Sci Technol; 2010 Dec; 44(23):8863-9. PubMed ID: 21058642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of system complexity on bacterial transport in saturated porous media.
    Jordan FL; Sandrin SK; Frye RJ; Brusseau ML; Maier RM
    J Contam Hydrol; 2004 Oct; 74(1-4):19-38. PubMed ID: 15358485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of substrate and electron acceptor availability on bioactive zone dynamics in porous media.
    Yolcubal I; Dorn JG; Maier RM; Brusseau ML
    J Contam Hydrol; 2003 Nov; 66(3-4):219-37. PubMed ID: 14568400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor.
    Collina E; Bestetti G; Di Gennaro P; Franzetti A; Gugliersi F; Lasagni M; Pitea D
    Environ Int; 2005 Feb; 31(2):167-71. PubMed ID: 15661278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonionic surfactant Tween 80-facilitated bacterial transport in porous media: A nonmonotonic concentration-dependent performance, mechanism, and machine learning prediction.
    Zhang D; Jiang J; Shi H; Lu L; Zhang M; Lin J; Lü T; Huang J; Zhong Z; Zhao H
    Environ Res; 2024 Jun; 251(Pt 2):118670. PubMed ID: 38493849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a kinetic basis for bioavailability of sorbed naphthalene in soil slurries.
    Park JH; Zhao X; Voice TC
    Water Res; 2002 Mar; 36(6):1620-8. PubMed ID: 11996350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.