These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 12628203)
1. Predicting the release of metals from ombrotrophic peat due to drought-induced acidification. Tipping E; Smith EJ; Lawlor AJ; Hughes S; Stevens PA Environ Pollut; 2003; 123(2):239-53. PubMed ID: 12628203 [TBL] [Abstract][Full Text] [Related]
2. Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect. Smith EJ; Hughes S; Lawlor AJ; Lofts S; Simon BM; Stevens PA; Stidson RT; Tipping E; Vincent CD Environ Pollut; 2005 Jul; 136(1):11-8. PubMed ID: 15809104 [TBL] [Abstract][Full Text] [Related]
3. The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Tipping E; Rieuwerts J; Pan G; Ashmore MR; Lofts S; Hill MT; Farago ME; Thornton I Environ Pollut; 2003; 125(2):213-25. PubMed ID: 12810315 [TBL] [Abstract][Full Text] [Related]
4. Metals in bulk deposition and surface waters at two upland locations in northern England. Lawlor AJ; Tipping E Environ Pollut; 2003; 121(2):153-67. PubMed ID: 12521104 [TBL] [Abstract][Full Text] [Related]
5. Comparing WHAM 6 and MINEQL+ 4.5 for the chemical speciation of Cu2+ in the rhizosphere of forest soils. Cloutier-Hurteau B; Sauvé S; Courchesne F Environ Sci Technol; 2007 Dec; 41(23):8104-10. PubMed ID: 18186344 [TBL] [Abstract][Full Text] [Related]
6. Biogeochemistry of metalliferous peats: sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores. Martínez CE; Yáñez C; Yoon SJ; Bruns MA Environ Sci Technol; 2007 Aug; 41(15):5323-9. PubMed ID: 17822097 [TBL] [Abstract][Full Text] [Related]
7. Temperature and microbial activity effects on trace element leaching from metalliferous peats. Qureshi S; Richards BK; McBride MB; Baveye P; Steenhuis TS J Environ Qual; 2003; 32(6):2067-75. PubMed ID: 14674528 [TBL] [Abstract][Full Text] [Related]
8. Modelling the potential mobility of Cd, Cu, Ni, Pb and Zn in Mollic Fluvisols. Rennert T; Rinklebe J Environ Geochem Health; 2017 Dec; 39(6):1291-1304. PubMed ID: 28540510 [TBL] [Abstract][Full Text] [Related]
9. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Weng L; Temminghoff EJ; Lofts S; Tipping E; Van Riemsdijk WH Environ Sci Technol; 2002 Nov; 36(22):4804-10. PubMed ID: 12487303 [TBL] [Abstract][Full Text] [Related]
10. The impact of drought and air pollution on metal profiles in peat cores. Souter L; Watmough SA Sci Total Environ; 2016 Jan; 541():1031-1040. PubMed ID: 26473705 [TBL] [Abstract][Full Text] [Related]
11. Metal distribution and binding in balneological peats and their aqueous extracts. Burba P; Beer AM; Lukanov J Fresenius J Anal Chem; 2001 Jun; 370(4):419-25. PubMed ID: 11495067 [TBL] [Abstract][Full Text] [Related]
12. Storage and distribution of trace metals and spheroidal carbonaceous particles (SCPs) from atmospheric deposition in the catchment peats of Lochnagar, Scotland. Yang H; Rose NL; Boyle JF; Battarbee RW Environ Pollut; 2001; 115(2):231-8. PubMed ID: 11706796 [TBL] [Abstract][Full Text] [Related]
13. Zinc-sulfur and cadmium-sulfur association in metalliferous peats: evidence from spectroscopy, distribution coefficients, and phytoavailability. Martínez CE; McBride MB; Kandianis MT; Duxbury JM; Yoon SJ; Bleam WF Environ Sci Technol; 2002 Sep; 36(17):3683-9. PubMed ID: 12322738 [TBL] [Abstract][Full Text] [Related]
14. [Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage]. Xu C; Xia BC; Wu HN; Lin XF; Qiu RL Huan Jing Ke Xue; 2009 Mar; 30(3):900-6. PubMed ID: 19432348 [TBL] [Abstract][Full Text] [Related]
15. Controls on accumulation and soil solution partitioning of heavy metals across upland sites in United Kingdom (UK). Zia A; van den Berg L; Ahmad MN; Riaz M; Zia D; Ashmore M J Environ Manage; 2018 Sep; 222():260-267. PubMed ID: 29860119 [TBL] [Abstract][Full Text] [Related]
16. An intermediate complexity dynamic model for predicting accumulation of atmospherically-deposited metals (Ni, Cu, Zn, Cd, Pb) in catchment soils: 1400 to present. Lofts S; Tipping E; Lawlor AJ; Shotbolt L Environ Pollut; 2013 Sep; 180():236-45. PubMed ID: 23792383 [TBL] [Abstract][Full Text] [Related]
17. Enrichment of Cu, Ni, Zn, Pb and As in an ombrotrophic peat bog near a Cu-Ni smelter in southwest Finland. Nieminen TM; Ukonmaanaho L; Shotyk W Sci Total Environ; 2002 Jun; 292(1-2):81-9. PubMed ID: 12108448 [TBL] [Abstract][Full Text] [Related]
18. Predicting trace metal solubility and fractionation in Urban soils from isotopic exchangeability. Mao LC; Young SD; Tye AM; Bailey EH Environ Pollut; 2017 Dec; 231(Pt 2):1529-1542. PubMed ID: 28947320 [TBL] [Abstract][Full Text] [Related]
19. Multiple site study of recent atmospheric metal (Pb, Zn and Cu) deposition in the NW Iberian Peninsula using peat cores. Olid C; Garcia-Orellana J; Martínez-Cortizas A; Masqué P; Peiteado-Varela E; Sanchez-Cabeza JA Sci Total Environ; 2010 Oct; 408(22):5540-9. PubMed ID: 20739045 [TBL] [Abstract][Full Text] [Related]
20. The chronology of anthropogenic, atmospheric Pb deposition recorded by peat cores in three minerogenic peat deposits from Switzerland. Shotyk W Sci Total Environ; 2002 Jun; 292(1-2):19-31. PubMed ID: 12108442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]