These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 12628782)
1. Tracer studies for evaluation of in situ air sparging and in-well aeration system performance at a gasoline-contaminated site. Berkey JS; Lachmar TE; Doucette WJ; Ryan Dupont R J Hazard Mater; 2003 Mar; 98(1-3):127-44. PubMed ID: 12628782 [TBL] [Abstract][Full Text] [Related]
2. Field monitoring and performance evaluation of an in situ air sparging system at a gasoline-contaminated site. Hall BL; Lachmar TE; Dupont RR J Hazard Mater; 2000 Jun; 74(3):165-86. PubMed ID: 10794912 [TBL] [Abstract][Full Text] [Related]
3. Field monitoring and performance evaluation of a field-scale in-well aeration system at a gasoline-contaminated site. Hall BL; Lachmar TE; Dupont RR J Hazard Mater; 2001 Mar; 82(2):197-212. PubMed ID: 11230915 [TBL] [Abstract][Full Text] [Related]
4. A review of centrifugal testing of gasoline contamination and remediation. Meegoda JN; Hu L Int J Environ Res Public Health; 2011 Aug; 8(8):3496-513. PubMed ID: 21909320 [TBL] [Abstract][Full Text] [Related]
5. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging. Reddy KR; Adams JA J Hazard Mater; 2000 Feb; 72(2-3):147-65. PubMed ID: 10650188 [TBL] [Abstract][Full Text] [Related]
6. Performance of air sparging systems: a review of case studies. Bass DH; Hastings NA; Brown RA J Hazard Mater; 2000 Feb; 72(2-3):101-19. PubMed ID: 10650186 [TBL] [Abstract][Full Text] [Related]
7. Field application of modified in situ soil flushing in combination with air sparging at a military site polluted by diesel and gasoline in Korea. Lee H; Lee Y; Kim J; Kim C Int J Environ Res Public Health; 2014 Aug; 11(9):8806-24. PubMed ID: 25166919 [TBL] [Abstract][Full Text] [Related]
8. Field and numerical analysis of in-situ air sparging: a case study. Benner ML; Stanford SM; Lee LS; Mohtar RH J Hazard Mater; 2000 Feb; 72(2-3):217-36. PubMed ID: 10650191 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill. Pleasant S; O'Donnell A; Powell J; Jain P; Townsend T Sci Total Environ; 2014 Jul; 485-486():31-40. PubMed ID: 24704954 [TBL] [Abstract][Full Text] [Related]
10. Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging. Schubert M; Schmidt A; Müller K; Weiss H J Environ Radioact; 2011 Feb; 102(2):193-9. PubMed ID: 21146260 [TBL] [Abstract][Full Text] [Related]
11. Groundwater remediation engineering sparging using acetylene--study on the flow distribution of air. Zheng YM; Zhang Y; Huang GQ; Jiang B; Li XG J Environ Sci (China); 2005; 17(3):437-9. PubMed ID: 16083119 [TBL] [Abstract][Full Text] [Related]
12. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer. Cohen GJV; Jousse F; Luze N; Höhener P; Atteia O J Contam Hydrol; 2016 Sep; 192():20-34. PubMed ID: 27341018 [TBL] [Abstract][Full Text] [Related]
13. Site 5 air sparging pilot test, Naval Air Station Cecil Field, Jacksonville, Florida. Murray WA; Lunardini RC; Ullo FJ; Davidson ME J Hazard Mater; 2000 Feb; 72(2-3):121-45. PubMed ID: 10650187 [TBL] [Abstract][Full Text] [Related]
14. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater. Yang X; Beckmann D; Fiorenza S; Niedermeier C Environ Sci Technol; 2005 Sep; 39(18):7279-86. PubMed ID: 16201659 [TBL] [Abstract][Full Text] [Related]
15. One-at-a-time sensitivity analysis of pollutant loadings to subsurface properties for the assessment of soil and groundwater pollution potential. Yu S; Yun ST; Hwang SI; Chae G Environ Sci Pollut Res Int; 2019 Jul; 26(21):21216-21238. PubMed ID: 31115822 [TBL] [Abstract][Full Text] [Related]
16. Progress in remediation of groundwater at petroleum sites in California. McHugh TE; Kulkarni PR; Newell CJ; Connor JA; Garg S Ground Water; 2014; 52(6):898-907. PubMed ID: 24224563 [TBL] [Abstract][Full Text] [Related]
17. Dissolved organic matter effects on the performance of a barrier to polycyclic aromatic hydrocarbon transport by groundwater. Moon JW; Goltz MN; Ahn KH; Park JW J Contam Hydrol; 2003 Feb; 60(3-4):307-26. PubMed ID: 12504364 [TBL] [Abstract][Full Text] [Related]
18. Transport of hydrocarbons from an emplaced fuel source experiment in the vadose zone at Airbase Vaerløse, Denmark. Christophersen M; Broholm MM; Mosbaek H; Karapanagioti HK; Burganos VN; Kjeldsen P J Contam Hydrol; 2005 Dec; 81(1-4):1-33. PubMed ID: 16102873 [TBL] [Abstract][Full Text] [Related]
19. Transport characteristics of gas phase ozone in unsaturated porous media for in-situ chemical oxidation. Choi H; Lim HN; Kim J; Hwang TM; Kang JW J Contam Hydrol; 2002 Jul; 57(1-2):81-98. PubMed ID: 12143994 [TBL] [Abstract][Full Text] [Related]
20. Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia. Johnston CD; Rayner JL; Briegel D J Contam Hydrol; 2002 Nov; 59(1-2):87-111. PubMed ID: 12683641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]