BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 12628935)

  • 1. Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9.
    Yoshida K; Wang HG; Miki Y; Kufe D
    EMBO J; 2003 Mar; 22(6):1431-41. PubMed ID: 12628935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATM-dependent phosphorylation of human Rad9 is required for ionizing radiation-induced checkpoint activation.
    Chen MJ; Lin YT; Lieberman HB; Chen G; Lee EY
    J Biol Chem; 2001 May; 276(19):16580-6. PubMed ID: 11278446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. c-Abl tyrosine kinase regulates the human Rad9 checkpoint protein in response to DNA damage.
    Yoshida K; Komatsu K; Wang HG; Kufe D
    Mol Cell Biol; 2002 May; 22(10):3292-300. PubMed ID: 11971963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human homologs of Schizosaccharomyces pombe rad1, hus1, and rad9 form a DNA damage-responsive protein complex.
    Volkmer E; Karnitz LM
    J Biol Chem; 1999 Jan; 274(2):567-70. PubMed ID: 9872989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling.
    Xu X; Vaithiyalingam S; Glick GG; Mordes DA; Chazin WJ; Cortez D
    Mol Cell Biol; 2008 Dec; 28(24):7345-53. PubMed ID: 18936170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage.
    Ohashi E; Takeishi Y; Ueda S; Tsurimoto T
    DNA Repair (Amst); 2014 Sep; 21():1-11. PubMed ID: 25091155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Rad9 is required for the activation of S-phase checkpoint and the maintenance of chromosomal stability.
    Dang T; Bao S; Wang XF
    Genes Cells; 2005 Apr; 10(4):287-95. PubMed ID: 15773892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ATRIP protein abundance by RAD9 in the DNA damage repair pathway.
    Peng XJ; Liu SJ; Bao CM; Liu YZ; Xie HW; Cai YH; Li BM; Hang HY; Ding X
    Cell Mol Biol (Noisy-le-grand); 2015 Dec; 61(8):31-6. PubMed ID: 26667770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of DNA-dependent protein kinase by protein kinase Cdelta: implications for apoptosis.
    Bharti A; Kraeft SK; Gounder M; Pandey P; Jin S; Yuan ZM; Lees-Miller SP; Weichselbaum R; Weaver D; Chen LB; Kufe D; Kharbanda S
    Mol Cell Biol; 1998 Nov; 18(11):6719-28. PubMed ID: 9774685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role of the C-terminal region of human Rad9 (hRad9) in nuclear transport of the hRad9 checkpoint complex.
    Hirai I; Wang HG
    J Biol Chem; 2002 Jul; 277(28):25722-7. PubMed ID: 11994305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention of the human Rad9 checkpoint complex in extraction-resistant nuclear complexes after DNA damage.
    Burtelow MA; Kaufmann SH; Karnitz LM
    J Biol Chem; 2000 Aug; 275(34):26343-8. PubMed ID: 10852904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses.
    Bao S; Tibbetts RS; Brumbaugh KM; Fang Y; Richardson DA; Ali A; Chen SM; Abraham RT; Wang XF
    Nature; 2001 Jun; 411(6840):969-74. PubMed ID: 11418864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caspase-3-mediated cleavage of Rad9 during apoptosis.
    Lee MW; Hirai I; Wang HG
    Oncogene; 2003 Sep; 22(41):6340-6. PubMed ID: 14508514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of SAPK/JNK signaling by protein kinase Cdelta in response to DNA damage.
    Yoshida K; Miki Y; Kufe D
    J Biol Chem; 2002 Dec; 277(50):48372-8. PubMed ID: 12377781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotoxin-induced Rad9-Hus1-Rad1 (9-1-1) chromatin association is an early checkpoint signaling event.
    Roos-Mattjus P; Vroman BT; Burtelow MA; Rauen M; Eapen AK; Karnitz LM
    J Biol Chem; 2002 Nov; 277(46):43809-12. PubMed ID: 12228248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ceramide-induced apoptosis by translocation, phosphorylation, and activation of protein kinase Cdelta in the Golgi complex.
    Kajimoto T; Shirai Y; Sakai N; Yamamoto T; Matsuzaki H; Kikkawa U; Saito N
    J Biol Chem; 2004 Mar; 279(13):12668-76. PubMed ID: 14715667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin.
    Zou L; Cortez D; Elledge SJ
    Genes Dev; 2002 Jan; 16(2):198-208. PubMed ID: 11799063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA damage-dependent and -independent phosphorylation of the hRad9 checkpoint protein.
    St Onge RP; Besley BD; Park M; Casselman R; Davey S
    J Biol Chem; 2001 Nov; 276(45):41898-905. PubMed ID: 11551919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two serine phosphorylation sites in the C-terminus of Rad9 are critical for 9-1-1 binding to TopBP1 and activation of the DNA damage checkpoint response in HeLa cells.
    Ueda S; Takeishi Y; Ohashi E; Tsurimoto T
    Genes Cells; 2012 Oct; 17(10):807-16. PubMed ID: 22925454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATR and Rad17 collaborate in modulating Rad9 localisation at sites of DNA damage.
    Medhurst AL; Warmerdam DO; Akerman I; Verwayen EH; Kanaar R; Smits VA; Lakin ND
    J Cell Sci; 2008 Dec; 121(Pt 23):3933-40. PubMed ID: 19020305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.