These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 12629107)

  • 81. Alanine transport systems in isolated basal plasma membrane of human placenta.
    Hoeltzli SD; Smith CH
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C630-7. PubMed ID: 2923196
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The IGF-II-deficient placenta: aspects of its function.
    Regnault TR; de Vrijer B; Anthony RV
    Trends Endocrinol Metab; 2002 Dec; 13(10):410-2. PubMed ID: 12431833
    [No Abstract]   [Full Text] [Related]  

  • 83. Placental transport of nutrients to the fetus.
    Hay WW
    Horm Res; 1994; 42(4-5):215-22. PubMed ID: 7868076
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Vanadate stimulates system A amino acid transport activity in skeletal muscle. Evidence for the involvement of intracellular pH as a mediator of vanadate action.
    Muñoz P; Gumà A; Camps M; Furriols M; Testar X; Palacín M; Zorzano A
    J Biol Chem; 1992 May; 267(15):10381-8. PubMed ID: 1375219
    [TBL] [Abstract][Full Text] [Related]  

  • 85. IFPA 2005 Award in Placentology Lecture. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? -- a review.
    Jansson T; Powell TL
    Placenta; 2006 Apr; 27 Suppl A():S91-7. PubMed ID: 16442615
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Basal leptin regulates amino acid uptake in polarized Caco-2 cells.
    Fanjul C; Barrenetxe J; Lostao MP
    J Physiol Biochem; 2013 Sep; 69(3):507-12. PubMed ID: 23359137
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The SLC38 family of sodium-amino acid co-transporters.
    Bröer S
    Pflugers Arch; 2014 Jan; 466(1):155-72. PubMed ID: 24193407
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Effects of maternal obesity on placental function and fetal development.
    Howell KR; Powell TL
    Reproduction; 2017 Mar; 153(3):R97-R108. PubMed ID: 27864335
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Regulation of Placental Amino Acid Transport and Fetal Growth.
    Vaughan OR; Rosario FJ; Powell TL; Jansson T
    Prog Mol Biol Transl Sci; 2017; 145():217-251. PubMed ID: 28110752
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Regulation of placental amino acid transport in health and disease.
    Shimada H; Powell TL; Jansson T
    Acta Physiol (Oxf); 2024 Jul; 240(7):e14157. PubMed ID: 38711335
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Leptin-Mediated Induction of IL-6 Expression in Hofbauer Cells Contributes to Preeclampsia Pathogenesis.
    Ozmen A; Nwabuobi C; Tang Z; Guo X; Larsen K; Guller S; Blas J; Moore M; Kayisli UA; Lockwood CJ; Guzeloglu-Kayisli O
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203306
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Kinin B1 receptor controls maternal adiponectin levels and influences offspring weight gain.
    Alves-Silva T; Húngaro TGR; Freitas-Lima LC; de Melo Arthur G; Arruda AC; Santos RB; Oyama LM; Mori MAS; Bader M; Araujo RC
    iScience; 2023 Dec; 26(12):108409. PubMed ID: 38058311
    [TBL] [Abstract][Full Text] [Related]  

  • 93. RISING STARS: Mechanistic insights into maternal-fetal cross talk and islet beta-cell development.
    Jo S; Alejandro EU
    J Endocrinol; 2023 Dec; 259(3):. PubMed ID: 37855321
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Hormonal Determinants of Growth and Weight Gain in the Human Fetus and Preterm Infant.
    Page L; Younge N; Freemark M
    Nutrients; 2023 Sep; 15(18):. PubMed ID: 37764824
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Made in the Womb: Maternal Programming of Offspring Cardiovascular Function by an Obesogenic Womb.
    Diniz MS; Grilo LF; Tocantins C; Falcão-Pires I; Pereira SP
    Metabolites; 2023 Jul; 13(7):. PubMed ID: 37512552
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Expression of nutrient transporters in placentas affected by gestational diabetes: role of leptin.
    Guadix P; Corrales I; Vilariño-García T; Rodríguez-Chacón C; Sánchez-Jiménez F; Jiménez-Cortegana C; Dueñas JL; Sánchez-Margalet V; Pérez-Pérez A
    Front Endocrinol (Lausanne); 2023; 14():1172831. PubMed ID: 37497352
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Maternal obesity and ovarian failure: is leptin the culprit?
    Sharma Y; Galvão AM
    Anim Reprod; 2022; 19(4):e20230007. PubMed ID: 36855701
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Parental obesity-induced changes in developmental programming.
    Cechinel LR; Batabyal RA; Freishtat RJ; Zohn IE
    Front Cell Dev Biol; 2022; 10():918080. PubMed ID: 36274855
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Maternal obesity and the impact of associated early-life inflammation on long-term health of offspring.
    Denizli M; Capitano ML; Kua KL
    Front Cell Infect Microbiol; 2022; 12():940937. PubMed ID: 36189369
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Proteomic Approaches in the Study of Placenta of Pregnancy Complicated by Gestational Diabetes Mellitus.
    Lapolla A; Traldi P
    Biomedicines; 2022 Sep; 10(9):. PubMed ID: 36140373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.