These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 12629170)
1. Glial cell inhibition of neurons by release of ATP. Newman EA J Neurosci; 2003 Mar; 23(5):1659-66. PubMed ID: 12629170 [TBL] [Abstract][Full Text] [Related]
2. Calcium increases in retinal glial cells evoked by light-induced neuronal activity. Newman EA J Neurosci; 2005 Jun; 25(23):5502-10. PubMed ID: 15944378 [TBL] [Abstract][Full Text] [Related]
3. Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. Newman EA J Neurosci; 2001 Apr; 21(7):2215-23. PubMed ID: 11264297 [TBL] [Abstract][Full Text] [Related]
4. Modulation of neuronal activity by glial cells in the retina. Newman EA; Zahs KR J Neurosci; 1998 Jun; 18(11):4022-8. PubMed ID: 9592083 [TBL] [Abstract][Full Text] [Related]
5. A purinergic dialogue between glia and neurons in the retina. Newman EA Novartis Found Symp; 2006; 276():193-202; discussion 202-7, 233-7, 275-81. PubMed ID: 16805431 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic conversion of ATP to adenosine contributes to ATP-induced inhibition of glutamate release in rat medullary dorsal horn neurons. Choi IS; Cho JH; Lee MG; Jang IS Neuropharmacology; 2015 Jun; 93():94-102. PubMed ID: 25656480 [TBL] [Abstract][Full Text] [Related]
7. Modulation of firing activity by ATP in dopamine neurons of the rat substantia nigra pars compacta. Choi YM; Jang JY; Jang M; Kim SH; Kang YK; Cho H; Chung S; Park MK Neuroscience; 2009 May; 160(3):587-95. PubMed ID: 19272429 [TBL] [Abstract][Full Text] [Related]
8. ATP-dependent paracrine communication between enteric neurons and glia in a primary cell culture derived from embryonic mice. Gomes P; Chevalier J; Boesmans W; Roosen L; van den Abbeel V; Neunlist M; Tack J; Vanden Berghe P Neurogastroenterol Motil; 2009 Aug; 21(8):870-e62. PubMed ID: 19368656 [TBL] [Abstract][Full Text] [Related]
9. Synergistic action of hypoosmolarity and glutamine in inducing acute swelling of retinal glial (Müller) cells. Karl A; Wurm A; Pannicke T; Krügel K; Obara-Michlewska M; Wiedemann P; Reichenbach A; Albrecht J; Bringmann A Glia; 2011 Feb; 59(2):256-66. PubMed ID: 21154559 [TBL] [Abstract][Full Text] [Related]
10. Upregulation of P2X(7) receptor currents in Müller glial cells during proliferative vitreoretinopathy. Bringmann A; Pannicke T; Moll V; Milenkovic I; Faude F; Enzmann V; Wolf S; Reichenbach A Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):860-7. PubMed ID: 11222551 [TBL] [Abstract][Full Text] [Related]
11. Memantine inhibits ATP-dependent K+ conductances in dopamine neurons of the rat substantia nigra pars compacta. Giustizieri M; Cucchiaroni ML; Guatteo E; Bernardi G; Mercuri NB; Berretta N J Pharmacol Exp Ther; 2007 Aug; 322(2):721-9. PubMed ID: 17496164 [TBL] [Abstract][Full Text] [Related]
12. Two different mechanosensitive calcium responses in Müller glial cells of the guinea pig retina: Differential dependence on purinergic receptor signaling. Agte S; Pannicke T; Ulbricht E; Reichenbach A; Bringmann A Glia; 2017 Jan; 65(1):62-74. PubMed ID: 27706854 [TBL] [Abstract][Full Text] [Related]
13. Upregulation of extracellular ATP-induced Müller cell responses in a dispase model of proliferative vitreoretinopathy. Francke M; Weick M; Pannicke T; Uckermann O; Grosche J; Goczalik I; Milenkovic I; Uhlmann S; Faude F; Wiedemann P; Reichenbach A; Bringmann A Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):870-81. PubMed ID: 11867610 [TBL] [Abstract][Full Text] [Related]
14. Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: activation by neuropeptide Y. Uckermann O; Wolf A; Kutzera F; Kalisch F; Beck-Sickinger AG; Wiedemann P; Reichenbach A; Bringmann A J Neurosci Res; 2006 Mar; 83(4):538-50. PubMed ID: 16435394 [TBL] [Abstract][Full Text] [Related]
15. Purinergic signaling involved in Müller cell function in the mammalian retina. Wurm A; Pannicke T; Iandiev I; Francke M; Hollborn M; Wiedemann P; Reichenbach A; Osborne NN; Bringmann A Prog Retin Eye Res; 2011 Sep; 30(5):324-42. PubMed ID: 21689780 [TBL] [Abstract][Full Text] [Related]
16. Loss of inhibition by brain natriuretic peptide over P2X3 receptors contributes to enhanced spike firing of trigeminal ganglion neurons in a mouse model of familial hemiplegic migraine type-1. Marchenkova A; van den Maagdenberg AM; Nistri A Neuroscience; 2016 Sep; 331():197-205. PubMed ID: 27346147 [TBL] [Abstract][Full Text] [Related]
17. Suppression of ATP-induced excitability in rat small-diameter trigeminal ganglion neurons by activation of GABAB receptor. Takeda M; Ikeda M; Takahashi M; Kanazawa T; Nasu M; Matsumoto S Brain Res Bull; 2013 Sep; 98():155-62. PubMed ID: 24004472 [TBL] [Abstract][Full Text] [Related]
18. Effect of adenosine and some of its structural analogues on the conductance of NMDA receptor channels in a subset of rat neostriatal neurones. Nörenberg W; Wirkner K; Illes P Br J Pharmacol; 1997 Sep; 122(1):71-80. PubMed ID: 9298530 [TBL] [Abstract][Full Text] [Related]
19. Hyperpolarization-activated cation current is involved in modulation of the excitability of rat retinal ganglion cells by dopamine. Chen L; Yang XL Neuroscience; 2007 Dec; 150(2):299-308. PubMed ID: 17942239 [TBL] [Abstract][Full Text] [Related]
20. Adenosine A1-receptor modulation of glutamate-induced calcium influx in rat retinal ganglion cells. Hartwick AT; Lalonde MR; Barnes S; Baldridge WH Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3740-8. PubMed ID: 15452085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]