These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 12630111)
1. [The propagation of acoustic waves along a DNA molecule in viscous environment]. Kamliuk AN; Nemtsov VB Biofizika; 2003; 48(1):35-9. PubMed ID: 12630111 [TBL] [Abstract][Full Text] [Related]
2. [Propagation of shear waves in the muscle tissue]. Afanas'eva DA; Tsaturian AK Biofizika; 2010; 55(5):899-904. PubMed ID: 21033359 [TBL] [Abstract][Full Text] [Related]
3. Theory of acoustic mode vibrations of DNA fibers. Sokoloff JB Biopolymers; 1990; 30(5-6):555-62. PubMed ID: 2265228 [TBL] [Abstract][Full Text] [Related]
4. Sound and vibration transmission in tissues. Oliver CC Semin Perinatol; 1989 Oct; 13(5):354-61. PubMed ID: 2814527 [TBL] [Abstract][Full Text] [Related]
5. Resonant generation of surface acoustic waves between moving and stationary piezoelectric crystals. Khudik VN; Theodosiou CE J Acoust Soc Am; 2007 Dec; 122(6):3405-8. PubMed ID: 18247749 [TBL] [Abstract][Full Text] [Related]
6. Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation. Hanford AD; O'Connor PD; Anderson JB; Long LN J Acoust Soc Am; 2008 Jun; 123(6):4118-26. PubMed ID: 18537363 [TBL] [Abstract][Full Text] [Related]
7. The viscous effects on shear horizontal surface acoustic waves in semi-infinite superlattices. Chen S; Lin S; Wang Z Ultrasonics; 2011 Jan; 51(1):29-33. PubMed ID: 20627275 [TBL] [Abstract][Full Text] [Related]
8. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves. Colosi JA J Acoust Soc Am; 2008 Sep; 124(3):1452-64. PubMed ID: 19045637 [TBL] [Abstract][Full Text] [Related]
9. In situ measurements of velocity dispersion and attenuation in New Jersey Shelf sediments. Turgut A; Yamamoto T J Acoust Soc Am; 2008 Sep; 124(3):EL122-7. PubMed ID: 19045553 [TBL] [Abstract][Full Text] [Related]
10. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere. de Groot-Hedlin C J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635 [TBL] [Abstract][Full Text] [Related]
11. Observation of low-frequency acoustic surface waves in the nocturnal boundary layer. Talmadge CL; Waxler R; Di X; Gilbert KE; Kulichkov S J Acoust Soc Am; 2008 Oct; 124(4):1956-62. PubMed ID: 19062835 [TBL] [Abstract][Full Text] [Related]
12. On the exponent in the power law for the attenuation at low frequencies in sandy sediments. Carey WM; Pierce AD; Evans RE; Holmes JD J Acoust Soc Am; 2008 Nov; 124(5):EL271-7. PubMed ID: 19045677 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear ultrasonic propagation in bubbly liquids: a numerical model. Vanhille C; Campos-Pozuelo C Ultrasound Med Biol; 2008 May; 34(5):792-808. PubMed ID: 18314254 [TBL] [Abstract][Full Text] [Related]
14. Methods for reconstructing acoustic quantities based on acoustic pressure measurements. Wu SF J Acoust Soc Am; 2008 Nov; 124(5):2680-97. PubMed ID: 19045753 [TBL] [Abstract][Full Text] [Related]
15. A solution to diffraction biases in sonoelasticity: the acoustic impulse technique. Catheline S; Wu F; Fink M J Acoust Soc Am; 1999 May; 105(5):2941-50. PubMed ID: 10335643 [TBL] [Abstract][Full Text] [Related]
16. Evidence for gravity's influence on molecules at a solid-solution interface. Fawcett NC; Craven RD; Zhang P; Evans JA Langmuir; 2004 Aug; 20(16):6651-7. PubMed ID: 15274569 [TBL] [Abstract][Full Text] [Related]
17. The peculiarities of propagation of the backward acoustic waves in piezoelectric plates. Zaitsev BD; Kuznetsova IE; Borodina IA; Teplykh AA IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1660-4. PubMed ID: 18986956 [TBL] [Abstract][Full Text] [Related]