These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 12630122)
1. [Increased generation of hydroxyl radicals in the rat hypertrophied myocardium: in vivo study by microdialysis]. Kalenikova EI; Gorodetskaia EA; Murashev AN; Ruuge EK; Medvedev OS Biofizika; 2003; 48(1):97-103. PubMed ID: 12630122 [TBL] [Abstract][Full Text] [Related]
2. Iron (III) attenuates hydroxyl radical generation accompanying non-enzymatic oxidation of noradrenaline in the rat heart. Obata T; Yamanaka Y Naunyn Schmiedebergs Arch Pharmacol; 2002 Feb; 365(2):158-63. PubMed ID: 11819034 [TBL] [Abstract][Full Text] [Related]
3. Block of cardiac ATP-sensitive K(+) channels reduces hydroxyl radicals in the rat myocardium. Obata T; Yamanaka Y Arch Biochem Biophys; 2000 Jun; 378(2):195-200. PubMed ID: 10860536 [TBL] [Abstract][Full Text] [Related]
4. Evidence for formation of hydroxyl radicals during reperfusion after global cerebral ischaemia in rats using salicylate trapping and microdialysis. Christensen T; Bruhn T; Balchen T; Diemer NH Neurobiol Dis; 1994 Dec; 1(3):131-8. PubMed ID: 9173992 [TBL] [Abstract][Full Text] [Related]
5. Protective effect of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on copper-induced hydroxyl radical generation in the rat heart. Obata T Toxicology; 2006 Jun; 223(3):175-80. PubMed ID: 16647179 [TBL] [Abstract][Full Text] [Related]
6. Blocking cardiac ATP-sensitive K+ channels reduces hydroxyl radicals caused by potassium chloride-induced depolarization in the rat myocardium. Obata T Anal Biochem; 2006 Sep; 356(1):59-65. PubMed ID: 16854364 [TBL] [Abstract][Full Text] [Related]
7. Role of reactive oxygen species in the sensitivity of rat hypertrophied myocardium to ischemia. Kalenikova EI; Gorodetskaya EA; Murashev AN; Ruuge EK; Medvedev OS Biochemistry (Mosc); 2004 Mar; 69(3):311-6. PubMed ID: 15061699 [TBL] [Abstract][Full Text] [Related]
8. An in vitro hydroxyl radical generation assay for microdialysis sampling calibration. Chen R; Stenken JA Anal Biochem; 2002 Jul; 306(1):40-9. PubMed ID: 12069412 [TBL] [Abstract][Full Text] [Related]
9. The protective effect of fluvastatin on hydroxyl radical generation by inhibiting low-density lipoprotein (LDL) oxidation in the rat myocardium. Obata T; Yonemoti H; Aomine M Microvasc Res; 2009 Mar; 77(2):163-5. PubMed ID: 18840452 [TBL] [Abstract][Full Text] [Related]
10. High-performance liquid chromatography-electrochemical determination of salicylate hydroxylation products as an in vivo marker of oxidative stress. Coudray C; Talla M; Martin S; Fatôme M; Favier A Anal Biochem; 1995 May; 227(1):101-11. PubMed ID: 7668368 [TBL] [Abstract][Full Text] [Related]
11. Effect of desferrioxamine, a strong iron (III) chelator, on 1-methyl-4-phenylpyridinium ion (MPP+)-induced hydroxyl radical generation in the rat striatum. Obata T Eur J Pharmacol; 2006 Jun; 539(1-2):34-8. PubMed ID: 16650845 [TBL] [Abstract][Full Text] [Related]
12. In vivo monitoring of .OH generation on jejunal ischemic injury by dialysis technique. Hirata T; Obata T; Yamanaka Y; Uchida Y Res Commun Mol Pathol Pharmacol; 1996 Aug; 93(2):187-97. PubMed ID: 8884990 [TBL] [Abstract][Full Text] [Related]
13. Characterization of hydroxyl radical generation in the striatum of free-moving rats due to carbon monoxide poisoning, as determined by in vivo microdialysis. Hara S; Mukai T; Kurosaki K; Kuriiwa F; Endo T Brain Res; 2004 Aug; 1016(2):281-4. PubMed ID: 15246866 [TBL] [Abstract][Full Text] [Related]
14. In vivo monitoring of norepinephrine and hydroxyl free radical generation by ferrous iron in the myocardium with a microdialysis technique. Obata T; Hosokawa H; Yamanaka Y Comp Biochem Physiol C Comp Pharmacol Toxicol; 1993 Nov; 106(3):635-8. PubMed ID: 7905801 [TBL] [Abstract][Full Text] [Related]
15. Edaravone reduces myocardial infarct size and improves cardiac function and remodelling in rabbits. Onogi H; Minatoguchi S; Chen XH; Bao N; Kobayashi H; Misao Y; Yasuda S; Yamaki T; Maruyama R; Uno Y; Arai M; Takemura G; Fujiwara H Clin Exp Pharmacol Physiol; 2006 Nov; 33(11):1035-41. PubMed ID: 17042911 [TBL] [Abstract][Full Text] [Related]
16. Phytic acid suppresses ischemia-induced hydroxyl radical generation in rat myocardium. Obata T; Nakashima M Eur J Pharmacol; 2016 Mar; 774():20-4. PubMed ID: 26724394 [TBL] [Abstract][Full Text] [Related]
17. Evidence of hydroxyl free radical generation by calcium overload in rat myocardium. Obata T; Tamura M; Yamanaka Y J Pharm Pharmacol; 1997 Aug; 49(8):787-90. PubMed ID: 9379357 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyl radical formation is greater in striatal core than in penumbra in a rat model of ischemic stroke. Liu S; Liu M; Peterson S; Miyake M; Vallyathan V; Liu KJ J Neurosci Res; 2003 Mar; 71(6):882-8. PubMed ID: 12605415 [TBL] [Abstract][Full Text] [Related]
20. Use of microdialysis for in-vivo monitoring of hydroxyl free-radical generation in the rat. Obata T J Pharm Pharmacol; 1997 Jul; 49(7):724-30. PubMed ID: 9255719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]