BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12630288)

  • 1. Integrated approaches to therapeutic target gene discovery.
    DeFife KM; Wong-Staal F
    Curr Opin Drug Discov Devel; 2002 Sep; 5(5):683-9. PubMed ID: 12630288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of gene array technology and proteomics in the search of new targets of diseases for therapeutics.
    Ferrer-Alcón M; Arteta D; Guerrero MJ; Fernandez-Orth D; Simón L; Martinez A
    Toxicol Lett; 2009 Apr; 186(1):45-51. PubMed ID: 19022361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput target discovery using cell-based genetics.
    Jackson PD; Harrington JJ
    Drug Discov Today; 2005 Jan; 10(1):53-60. PubMed ID: 15676299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical cancer genetics, genomics and proteomics.
    Gruber MP; Geraci MW
    J Insur Med; 2005; 37(3):190-200. PubMed ID: 16259209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and genomic approaches to identify and study the targets of bioactive small molecules.
    Zheng XS; Chan TF; Zhou HH
    Chem Biol; 2004 May; 11(5):609-18. PubMed ID: 15157872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Where are we in genomics?
    Hocquette JF
    J Physiol Pharmacol; 2005 Jun; 56 Suppl 3():37-70. PubMed ID: 16077195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data merging for integrated microarray and proteomic analysis.
    Waters KM; Pounds JG; Thrall BD
    Brief Funct Genomic Proteomic; 2006 Dec; 5(4):261-72. PubMed ID: 16772273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards high-throughput characterization of small molecule mechanisms of action.
    Luesch H
    Mol Biosyst; 2006 Dec; 2(12):609-20. PubMed ID: 17216042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel drug discovery and molecular biological methods, via DNA, RNA and protein changes using structure-function transitions: Transitional structural chemogenomics, transitional structural chemoproteomics and novel multi-stranded nucleic acid microarray.
    Gagna CE; Lambert WC
    Med Hypotheses; 2006; 67(5):1099-114. PubMed ID: 16828979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assigning functions to genes--the main challenge of the post-genomics era.
    Janitz M
    Rev Physiol Biochem Pharmacol; 2007; 159():115-29. PubMed ID: 17846923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MILANO--custom annotation of microarray results using automatic literature searches.
    Rubinstein R; Simon I
    BMC Bioinformatics; 2005 Jan; 6():12. PubMed ID: 15661078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systems toxicology and the Chemical Effects in Biological Systems (CEBS) knowledge base.
    Waters M; Boorman G; Bushel P; Cunningham M; Irwin R; Merrick A; Olden K; Paules R; Selkirk J; Stasiewicz S; Weis B; Van Houten B; Walker N; Tennant R
    EHP Toxicogenomics; 2003 Jan; 111(1T):15-28. PubMed ID: 12735106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomic and genomic profiling reveals metastasis-related protein expression patterns in gastric cancer cells.
    Chen YR; Juan HF; Huang HC; Huang HH; Lee YJ; Liao MY; Tseng CW; Lin LL; Chen JY; Wang MJ; Chen JH; Chen YJ
    J Proteome Res; 2006 Oct; 5(10):2727-42. PubMed ID: 17022644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multivariate analysis approach to the integration of proteomic and gene expression data.
    Fagan A; Culhane AC; Higgins DG
    Proteomics; 2007 Jun; 7(13):2162-71. PubMed ID: 17549791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biology calls the targets: combining RNAi and disease biology.
    van Es HH; Arts GJ
    Drug Discov Today; 2005 Oct; 10(20):1385-91. PubMed ID: 16253877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of oncogenomics for cancer research and clinical oncology.
    Herrmann JL; Rastelli L; Burgess CE; Fernandez EE; Rothberg BE; Rothberg JM; Shimkets RA
    Cancer J; 2001; 7(1):40-51. PubMed ID: 11269647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of companion diagnostics in the development and use of mutation-targeted cancer therapies.
    Papadopoulos N; Kinzler KW; Vogelstein B
    Nat Biotechnol; 2006 Aug; 24(8):985-95. PubMed ID: 16900147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA interference as an anticancer therapy: a patent perspective.
    Dykxhoorn DM
    Expert Opin Ther Pat; 2009 Apr; 19(4):475-91. PubMed ID: 19441927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. siRNA-based approaches in cancer therapy.
    Devi GR
    Cancer Gene Ther; 2006 Sep; 13(9):819-29. PubMed ID: 16424918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.