These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12630466)

  • 1. Kinetically inert Cu in coastal waters.
    Kogut MB; Voelker BM
    Environ Sci Technol; 2003 Feb; 37(3):509-18. PubMed ID: 12630466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong copper-binding behavior of terrestrial humic substances in seawater.
    Kogut MB; Voelker BM
    Environ Sci Technol; 2001 Mar; 35(6):1149-56. PubMed ID: 11347927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry.
    Ndungu K
    Environ Sci Technol; 2012 Jul; 46(14):7644-52. PubMed ID: 22724636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-site characterization of humic-rich hydrocolloids and their metal loading by means of mobile size-fractionation and exchange techniques.
    Burba P; Van den Bergh J; Klockow D
    Fresenius J Anal Chem; 2001 Nov; 371(5):660-9. PubMed ID: 11767893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of copper speciation in coastal marine waters measured using analytical voltammetry and diffusion gradient in thin-film techniques.
    Twiss MR; Moffett JW
    Environ Sci Technol; 2002 Mar; 36(5):1061-8. PubMed ID: 11917992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling complexometric titrations of natural water samples.
    Hudson RJ; Rue EL; Bruland KW
    Environ Sci Technol; 2003 Apr; 37(8):1553-62. PubMed ID: 12731837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Performance Size Exclusion Chromatography-Inductively Coupled Plasma-Mass Spectrometry to Study the Copper and Cadmium Complexation with Humic Acids.
    Radaelli M; Scalabrin E; Toscano G; Capodaglio G
    Molecules; 2019 Sep; 24(17):. PubMed ID: 31484411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the deposition potential on the voltammetric determination of complexing ligand concentrations in sea-water.
    van den Berg CM
    Analyst; 1992 Mar; 117(3):589-93. PubMed ID: 1580406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for strong but dynamic iron-humic colloidal associations in humic-rich coastal waters.
    Batchelli S; Muller FL; Chang KC; Lee CL
    Environ Sci Technol; 2010 Nov; 44(22):8485-90. PubMed ID: 20964358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of copper-binding ligands in Fram Strait and influences from the Greenland Shelf (GEOTRACES GN05).
    Arnone V; Santana-Casiano JM; González-Dávila M; Sarthou G; Krisch S; Lodeiro P; Achterberg EP; González AG
    Sci Total Environ; 2024 Jan; 909():168162. PubMed ID: 37952666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-marsh areas as copper complexing ligand sources to estuarine and coastal systems.
    Santos-Echeandía J; Caetano M; Laglera LM; Vale C
    Chemosphere; 2013 Jan; 90(2):772-81. PubMed ID: 23111172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct simultaneous determination of Co, Cu, Fe, Ni and V in pore waters by means of adsorptive cathodic stripping voltammetry with mixed ligands.
    Santos-Echeandía J
    Talanta; 2011 Jul; 85(1):506-12. PubMed ID: 21645733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformations of metal species in ageing humic hydrocolloids studied by competitive ligand and metal exchange.
    Burba P; Van den Bergh J
    Anal Bioanal Chem; 2004 Mar; 378(6):1637-43. PubMed ID: 15214428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper (II) complexation in northern California rice field waters: an investigation using differential pulse anodic and cathodic stripping voltammetry.
    Witter AE; Mabury SA; Jones AD
    Sci Total Environ; 1998 Mar; 212(1):21-37. PubMed ID: 9525045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic Copper Speciation by Anodic Stripping Voltammetry in Estuarine Waters With High Dissolved Organic Matter.
    Pađan J; Marcinek S; Cindrić AM; Santinelli C; Retelletti Brogi S; Radakovitch O; Garnier C; Omanović D
    Front Chem; 2020; 8():628749. PubMed ID: 33634075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper-binding ligands in deep-sea pore waters of the Pacific Ocean and potential impacts of polymetallic nodule mining on the copper cycle.
    Paul SAL; Zitoun R; Noowong A; Manirajah M; Koschinsky A
    Sci Rep; 2021 Sep; 11(1):18425. PubMed ID: 34531446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial variability of total dissolved copper and copper speciation in the inshore waters of Bermuda.
    Oldham VE; Swenson MM; Buck KN
    Mar Pollut Bull; 2014 Feb; 79(1-2):314-20. PubMed ID: 24461699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of copper speciation in estuarine water measured using analytical voltammetry and supported liquid membrane techniques.
    Ndungu K; Hurst MP; Bruland KW
    Environ Sci Technol; 2005 May; 39(9):3166-75. PubMed ID: 15926567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of a Copper-Ion Selective Electrode and Fluorometric Titration for the Determination of Copper(II) Ion Conditional Stability Constants of Humic Substances.
    Chen J; Chen H; Zhang XW; Lei K; Kenny JE
    Appl Spectrosc; 2015 Nov; 69(11):1293-302. PubMed ID: 26647052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive ligand exchange between Cu-humic acid complexes and methanobactin.
    Pesch ML; Hoffmann M; Christl I; Kraemer SM; Kretzschmar R
    Geobiology; 2013 Jan; 11(1):44-54. PubMed ID: 23082815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.