BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12630747)

  • 1. Models and measurements of light intensity changes during laser interstitial thermal therapy: implications for optical monitoring of the coagulation boundary location.
    Chin LC; Whelan WM; Vitkin IA
    Phys Med Biol; 2003 Feb; 48(4):543-59. PubMed ID: 12630747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiance-based monitoring of the extent of tissue coagulation during laser interstitial thermal therapy.
    Chin LC; Wilson BC; Whelan WM; Vitkin IA
    Opt Lett; 2004 May; 29(9):959-61. PubMed ID: 15143640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in relative light fluence measured during laser heating: implications for optical monitoring and modelling of interstitial laser photocoagulation.
    Chin LC; Whelan WM; Sherar MD; Vitkin IA
    Phys Med Biol; 2001 Sep; 46(9):2407-20. PubMed ID: 11580177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a practical model for light and heat distribution using laser-induced thermotherapy near to a large vessel.
    Verhey JF; Mohammed Y; Ludwig A; Giese K
    Phys Med Biol; 2003 Nov; 48(21):3595-610. PubMed ID: 14653565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of dynamic optical properties during interstitial laser photocoagulation.
    Iizuka MN; Vitkin IA; Kolios MC; Sherar MD
    Phys Med Biol; 2000 May; 45(5):1335-57. PubMed ID: 10843108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorectal tumors and hepatic metastases differ in their optical properties-relevance for dosimetry in laser-induced interstitial thermotherapy.
    Holmer C; Lehmann KS; Risk J; Roggan A; Germer CT; Reissfelder C; Isbert C; Buhr HJ; Ritz JP
    Lasers Surg Med; 2006 Apr; 38(4):296-304. PubMed ID: 16526042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser interstitial thermotherapy (LITT) monitoring using high-resolution digital mammography: theory and experimental studies.
    Minhaj AM; Mann F; Milne PJ; Denham DB; Salas N; Nose I; Damgaard-Iversen K; Parel JM; Robinson DS
    Phys Med Biol; 2002 Aug; 47(16):2987-99. PubMed ID: 12222861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of thermal tissue coagulation and their value for the planning and monitoring of laser-induced interstitial thermotherapy (LITT).
    Puccini S; Bär NK; Bublat M; Kahn T; Busse H
    Magn Reson Med; 2003 Feb; 49(2):351-62. PubMed ID: 12541256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbative diffusion theory formalism for interpreting temporal light intensity changes during laser interstitial thermal therapy.
    Chin LC; Whelan WM; Vitkin IA
    Phys Med Biol; 2007 Mar; 52(6):1659-74. PubMed ID: 17327655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient simulation of laser ablation based on Monte Carlo light transport with dynamic optical properties model.
    Shimojo Y; Sudo K; Nishimura T; Ozawa T; Tsuruta D; Awazu K
    Sci Rep; 2023 Jul; 13(1):11898. PubMed ID: 37488156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simplified treatment planning for interstitial laser thermotherapy by disregarding light transport: a numerical study.
    Olsrud J; Wirestam R; Persson BR; Tranberg KG
    Lasers Surg Med; 1999; 25(4):304-14. PubMed ID: 10534747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser thermal therapy: utility of interstitial fluence monitoring for locating optical sensors.
    Whelan WM; Chun P; Chin LC; Sherar MD; Vitkin IA
    Phys Med Biol; 2001 Apr; 46(4):N91-6. PubMed ID: 11324974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tissue-mimicking prostate phantom for 980 nm laser interstitial thermal therapy.
    Geoghegan R; Santamaria A; Priester A; Zhang L; Wu H; Grundfest W; Marks L; Natarajan S
    Int J Hyperthermia; 2019; 36(1):993-1002. PubMed ID: 31544549
    [No Abstract]   [Full Text] [Related]  

  • 14. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm.
    Ritz JP; Roggan A; Isbert C; Müller G; Buhr HJ; Germer CT
    Lasers Surg Med; 2001; 29(3):205-12. PubMed ID: 11573221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring LITT thermal penetration depth using real-time analysis of backscattered light.
    Shacham R; Steinberg I; Gandjbakhche AH; Gannot I
    J Biophotonics; 2014 Jun; 7(6):381-91. PubMed ID: 23192946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of laser power, blood perfusion, thermal and optical properties of human liver tissue on thermal damage in LITT.
    Shibib KS; Munshid MA; Lateef HA
    Lasers Med Sci; 2017 Dec; 32(9):2039-2046. PubMed ID: 28894956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI monitoring of laser ablation using optical flow.
    Zientara GP; Saiviroonporn P; Morrison PR; Fried MP; Hushek SG; Kikinis R; Jolesz FA
    J Magn Reson Imaging; 1998; 8(6):1306-18. PubMed ID: 9848743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic optical property changes: implications for reflectance feedback control of photocoagulation.
    Jerath MR; Gardner CM; Rylander HG; Welch AJ
    J Photochem Photobiol B; 1992 Oct; 16(2):113-26. PubMed ID: 1474421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical phantom materials for near infrared laser photocoagulation studies.
    Iizuka MN; Sherar MD; Vitkin IA
    Lasers Surg Med; 1999; 25(2):159-69. PubMed ID: 10455223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.