BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12630860)

  • 1. Peptides derived from two dynamically disordered proteins self-assemble into amyloid-like fibrils.
    Bothner B; Aubin Y; Kriwacki RW
    J Am Chem Soc; 2003 Mar; 125(11):3200-1. PubMed ID: 12630860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the molecular basis of Arf and Hdm2 interactions.
    Bothner B; Lewis WS; DiGiammarino EL; Weber JD; Bothner SJ; Kriwacki RW
    J Mol Biol; 2001 Nov; 314(2):263-77. PubMed ID: 11718560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties.
    Tenidis K; Waldner M; Bernhagen J; Fischle W; Bergmann M; Weber M; Merkle ML; Voelter W; Brunner H; Kapurniotu A
    J Mol Biol; 2000 Jan; 295(4):1055-71. PubMed ID: 10656810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis.
    Jaikaran ET; Higham CE; Serpell LC; Zurdo J; Gross M; Clark A; Fraser PE
    J Mol Biol; 2001 May; 308(3):515-25. PubMed ID: 11327784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a novel molecular-recognition and self-assembly domain within the islet amyloid polypeptide.
    Mazor Y; Gilead S; Benhar I; Gazit E
    J Mol Biol; 2002 Oct; 322(5):1013-24. PubMed ID: 12367525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does domain replacement affect fibril formation of the rabbit/human prion proteins.
    Yan X; Huang JJ; Zhou Z; Chen J; Liang Y
    PLoS One; 2014; 9(11):e113238. PubMed ID: 25401497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A partially structured region of a largely unstructured protein, Plasmodium falciparum merozoite surface protein 2 (MSP2), forms amyloid-like fibrils.
    Yang X; Adda CG; Keizer DW; Murphy VJ; Rizkalla MM; Perugini MA; Jackson DC; Anders RF; Norton RS
    J Pept Sci; 2007 Dec; 13(12):839-48. PubMed ID: 17883245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsically unstructured domains of Arf and Hdm2 form bimolecular oligomeric structures in vitro and in vivo.
    Sivakolundu SG; Nourse A; Moshiach S; Bothner B; Ashley C; Satumba J; Lahti J; Kriwacki RW
    J Mol Biol; 2008 Dec; 384(1):240-54. PubMed ID: 18809412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-β supramolecular networks.
    Hiew SH; Guerette PA; Zvarec OJ; Phillips M; Zhou F; Su H; Pervushin K; Orner BP; Miserez A
    Acta Biomater; 2016 Dec; 46():41-54. PubMed ID: 27693688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-soluble beta-sheet models which self-assemble into fibrillar structures.
    Janek K; Behlke J; Zipper J; Fabian H; Georgalis Y; Beyermann M; Bienert M; Krause E
    Biochemistry; 1999 Jun; 38(26):8246-52. PubMed ID: 10387070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the core structure of lysozyme amyloid fibrils by proteolysis.
    Frare E; Mossuto MF; Polverino de Laureto P; Dumoulin M; Dobson CM; Fontana A
    J Mol Biol; 2006 Aug; 361(3):551-61. PubMed ID: 16859705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid architecture: complementary assembly of heterogeneous combinations of three or four peptides into amyloid fibrils.
    Takahashi Y; Ueno A; Mihara H
    Chembiochem; 2002 Jul; 3(7):637-42. PubMed ID: 12324997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a chemically and conformationally self-replicating system of amyloid-like fibrils.
    Takahashi Y; Mihara H
    Bioorg Med Chem; 2004 Feb; 12(4):693-9. PubMed ID: 14759730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of amyloid fibrils by peptides derived from the bacterial cold shock protein CspB.
    Gross M; Wilkins DK; Pitkeathly MC; Chung EW; Higham C; Clark A; Dobson CM
    Protein Sci; 1999 Jun; 8(6):1350-7. PubMed ID: 10386885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple interacting domains contribute to p14ARF mediated inhibition of MDM2.
    Clark PA; Llanos S; Peters G
    Oncogene; 2002 Jul; 21(29):4498-507. PubMed ID: 12085228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amyloid-like fibril formation by tachykinin neuropeptides and its relevance to amyloid β-protein aggregation and toxicity.
    Singh PK; Maji SK
    Cell Biochem Biophys; 2012 Sep; 64(1):29-44. PubMed ID: 22628076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity.
    Kapurniotu A; Schmauder A; Tenidis K
    J Mol Biol; 2002 Jan; 315(3):339-50. PubMed ID: 11786016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro characterization of lactoferrin aggregation and amyloid formation.
    Nilsson MR; Dobson CM
    Biochemistry; 2003 Jan; 42(2):375-82. PubMed ID: 12525164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembling amyloid fibrils from designed structures containing a significant amyloid beta-peptide fragment.
    Tjernberg LO; Tjernberg A; Bark N; Shi Y; Ruzsicska BP; Bu Z; Thyberg J; Callaway DJ
    Biochem J; 2002 Aug; 366(Pt 1):343-51. PubMed ID: 12023906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils.
    Measey TJ; Schweitzer-Stenner R
    J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.