These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 12630936)
21. Contributions of polyol pathway to oxidative stress in diabetic cataract. Lee AY; Chung SS FASEB J; 1999 Jan; 13(1):23-30. PubMed ID: 9872926 [TBL] [Abstract][Full Text] [Related]
22. The effect of oxidation on sorbitol pathway kinetics. Barnett PA; González RG; Chylack LT; Cheng HM Diabetes; 1986 Apr; 35(4):426-32. PubMed ID: 3956880 [TBL] [Abstract][Full Text] [Related]
23. Regulation of lens aldose reductase activity by nitric oxide. Srivastava S; Tammali R; Chandra D; Greer DA; Ramana KV; Bhatnagar A; Srivastava SK Exp Eye Res; 2005 Dec; 81(6):664-72. PubMed ID: 15967436 [TBL] [Abstract][Full Text] [Related]
24. Quercetin inhibited epithelial mesenchymal transition in diabetic rats, high-glucose-cultured lens, and SRA01/04 cells through transforming growth factor-β2/phosphoinositide 3-kinase/Akt pathway. Du L; Hao M; Li C; Wu W; Wang W; Ma Z; Yang T; Zhang N; Isaac AT; Zhu X; Sun Y; Lu Q; Yin X Mol Cell Endocrinol; 2017 Sep; 452():44-56. PubMed ID: 28501572 [TBL] [Abstract][Full Text] [Related]
25. Evidence of a glycemic threshold for the development of cataracts in diabetic rats. Swamy-Mruthinti S; Shaw SM; Zhao HR; Green K; Abraham EC Curr Eye Res; 1999 Jun; 18(6):423-9. PubMed ID: 10435829 [TBL] [Abstract][Full Text] [Related]
26. Combination of glycemic and oxidative stress in lens: implications in augmentation of cataract formation in diabetes. Hegde KR; Varma SD Free Radic Res; 2005 May; 39(5):513-7. PubMed ID: 16036327 [TBL] [Abstract][Full Text] [Related]
27. Efficacy of Alrestatin, an aldose reductase inhibitor, in human diabetic and nondiabetic lenses. Chylack LT; Henriques HF; Cheng HM; Tung WH Ophthalmology; 1979 Sep; 86(9):1579-85. PubMed ID: 121768 [TBL] [Abstract][Full Text] [Related]
28. Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabetic rats. Perry RE; Swamy MS; Abraham EC Exp Eye Res; 1987 Feb; 44(2):269-82. PubMed ID: 3582512 [TBL] [Abstract][Full Text] [Related]
29. GP-1447, an inhibitor of aldose reductase, prevents the progression of diabetic cataract in rats. Kawakubo K; Mori A; Sakamoto K; Nakahara T; Ishii K Biol Pharm Bull; 2012; 35(6):866-72. PubMed ID: 22687477 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of an aldose reductase inhibitor on lens metabolism, ATPases and antioxidative defense in streptozotocin-diabetic rats: an intervention study. Obrosova IG; Fathallah L Diabetologia; 2000 Aug; 43(8):1048-55. PubMed ID: 10990083 [TBL] [Abstract][Full Text] [Related]
31. Inhibition of aldose reductase by Aegle marmelos and its protective role in diabetic cataract. Sankeshi V; Kumar PA; Naik RR; Sridhar G; Kumar MP; Gopal VV; Raju TN J Ethnopharmacol; 2013 Aug; 149(1):215-21. PubMed ID: 23827758 [TBL] [Abstract][Full Text] [Related]
32. Blood and lens lipid peroxidation and antioxidant status in normal individuals, senile and diabetic cataractous patients. Donma O; Yorulmaz E; Pekel H; Suyugül N Curr Eye Res; 2002 Jul; 25(1):9-16. PubMed ID: 12518238 [TBL] [Abstract][Full Text] [Related]
33. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat. Ranjan M; Nayak S; Rao BS Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392 [TBL] [Abstract][Full Text] [Related]
34. Ultrasonic and biochemical evaluation of human diabetic lens. Raitelaitiene R; Paunksnis A; Ivanov L; Kurapkiene S Medicina (Kaunas); 2005; 41(8):641-8. PubMed ID: 16160411 [TBL] [Abstract][Full Text] [Related]
35. Modelling cortical cataractogenesis 21: in diabetic rat lenses taurine supplementation partially reduces damage resulting from osmotic compensation leading to osmolyte loss and antioxidant depletion. Mitton KP; Linklater HA; Dzialoszynski T; Sanford SE; Starkey K; Trevithick JR Exp Eye Res; 1999 Sep; 69(3):279-89. PubMed ID: 10471336 [TBL] [Abstract][Full Text] [Related]
36. Elevated Expression of indoleamine 2,3-dioxygenase (IDO) and accumulation of kynurenic acid in the pathogenesis of STZ-induced diabetic cataract in Wistar rats. Kanth VR; Lavanya K; Srinivas J; Raju TN Curr Eye Res; 2009 Apr; 34(4):274-81. PubMed ID: 19373575 [TBL] [Abstract][Full Text] [Related]
37. Long-term effect of Trigonella foenum graecum and its combination with sodium orthovanadate in preventing histopathological and biochemical abnormalities in diabetic rat ocular tissues. Preet A; Siddiqui MR; Taha A; Badhai J; Hussain ME; Yadava PK; Baquer NZ Mol Cell Biochem; 2006 Sep; 289(1-2):137-47. PubMed ID: 16718375 [TBL] [Abstract][Full Text] [Related]
38. The utilization of 13C and 31P nuclear magnetic resonance spectroscopy in the study of the sorbitol pathway and aldose reductase inhibition in intact rabbit lenses. Williams WF; Odom JD Exp Eye Res; 1987 Jun; 44(6):717-30. PubMed ID: 3115803 [TBL] [Abstract][Full Text] [Related]
39. Implications of aldose reductase in cataracts in human diabetes. Varma SD; Schocket SS; Richards RD Invest Ophthalmol Vis Sci; 1979 Mar; 18(3):237-41. PubMed ID: 106020 [TBL] [Abstract][Full Text] [Related]