These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12630936)

  • 61. Cataracts in experimentally diabetic mouse: morphological and apoptotic changes.
    Hegde KR; Varma SD
    Diabetes Obes Metab; 2005 Mar; 7(2):200-4. PubMed ID: 15715894
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reversal of diabetic cataract by sorbinil, an aldose reductase inhibitor.
    Beyer-Mears A; Cruz E
    Diabetes; 1985 Jan; 34(1):15-21. PubMed ID: 3917257
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The effect of high glucose and oxidative stress on lens metabolism, aldose reductase, and senile cataractogenesis.
    Cheng HM; González RG
    Metabolism; 1986 Apr; 35(4 Suppl 1):10-4. PubMed ID: 3083198
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pyridoxamine inhibits maillard reactions in diabetic rat lenses.
    Padival S; Nagaraj RH
    Ophthalmic Res; 2006; 38(5):294-302. PubMed ID: 16974131
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Studies on diabetic cataract in rats induced by streptozotocin. II. Biochemical examinations of rat lenses in relation to cataract stages.
    Kuriyama H; Sasaki K; Fukuda M
    Ophthalmic Res; 1983; 15(4):191-7. PubMed ID: 6226909
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Protein oxidation and lens opacity in humans.
    Boscia F; Grattagliano I; Vendemiale G; Micelli-Ferrari T; Altomare E
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2461-5. PubMed ID: 10937554
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of a novel aldose reductase inhibitor, FR74366, and its effects on diabetic cataract and neuropathy in the rat.
    Ao S; Shingu Y; Kikuchi C; Takano Y; Nomura K; Fujiwara T; Ohkubo Y; Notsu Y; Yamaguchi I
    Metabolism; 1991 Jan; 40(1):77-87. PubMed ID: 1898618
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The possible mechanism of naphthalene cataract in rat and its prevention by an aldose reductase inhibitor (ALO1576).
    Xu GT; Zigler JS; Lou MF
    Exp Eye Res; 1992 Jan; 54(1):63-72. PubMed ID: 1541342
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Increased glycosylation of proteins from cataractous lenses in diabetes.
    Kasai K; Nakamura T; Kase N; Hiraoka T; Suzuki R; Kogure F; Shimoda SI
    Diabetologia; 1983 Jul; 25(1):36-8. PubMed ID: 6884614
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lens superoxide dismutase and catalase activities in diabetic cataract.
    Ozmen B; Ozmen D; Erkin E; Güner I; Habif S; Bayindir O
    Clin Biochem; 2002 Feb; 35(1):69-72. PubMed ID: 11937081
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Altering the course of cataracts in diabetic rats.
    Fukushi S; Merola LO; Kinoshita JH
    Invest Ophthalmol Vis Sci; 1980 Mar; 19(3):313-5. PubMed ID: 6766909
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Absorbance and Light Scattering of Lenses Organ Cultured with Glucose.
    Alghamdi AHS; Mohamed H; Sledge SM; Borchman D
    Curr Eye Res; 2018 Oct; 43(10):1233-1238. PubMed ID: 29874948
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Antidiabetic cataract effects of GbE, rutin and quercetin are mediated by the inhibition of oxidative stress and polyol pathway.
    Lu Q; Hao M; Wu W; Zhang N; Isaac AT; Yin J; Zhu X; Du L; Yin X
    Acta Biochim Pol; 2018; 65(1):35-41. PubMed ID: 29281744
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Modelling cortical cataractogenesis: 3. In vivo effects of vitamin E on cataractogenesis in diabetic rats.
    Ross WM; Creighton MO; Stewart-DeHaan PJ; Sanwal M; Hirst M; Trevithick JR
    Can J Ophthalmol; 1982 Apr; 17(2):61-6. PubMed ID: 7104839
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Na+-K+-ATPase pumping activity is not directly linked to myo-inositol levels after sorbinil treatment in lenses of diabetic rats.
    Yeh LA; Rafford CE; Goddu KJ; Ashton MA; Beyer TA; Hutson NJ
    Diabetes; 1987 Dec; 36(12):1414-9. PubMed ID: 2824260
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Changes in erythrocyte glucose-6-phosphate dehydrogenase (G6PD) and reduced glutathione (GSH) activities in the development of senile and diabetic cataracts.
    Chandrasena LG; De Silva LD; De Silva KI; Dissanayaka P; Peiris H
    Southeast Asian J Trop Med Public Health; 2008 Jul; 39(4):731-6. PubMed ID: 19058613
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Interaction between osmotic and oxidative stress in diabetic precataractous lens: studies with a sorbitol dehydrogenase inhibitor.
    Obrosova IG; Fathallah L; Lang HJ
    Biochem Pharmacol; 1999 Dec; 58(12):1945-54. PubMed ID: 10591149
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The lens in diabetes.
    Bron AJ; Sparrow J; Brown NA; Harding JJ; Blakytny R
    Eye (Lond); 1993; 7 ( Pt 2)():260-75. PubMed ID: 7607346
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Free epsilon amino groups and 5-hydroxymethylfurfural contents in clear and cataractous human lenses.
    Rao GN; Cotlier E
    Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):98-102. PubMed ID: 3941040
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [The role of polyol pathways in formation of diabetic cataracts].
    Sabasiński K; Andrzejewska-Buczko J
    Klin Oczna; 1997; 99(6):401-4. PubMed ID: 9685789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.