BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12631077)

  • 1. Expression of the K+ channel Kir7.1 in the developing rat kidney: role in K+ excretion.
    Suzuki Y; Yasuoka Y; Shimohama T; Nishikitani M; Nakamura N; Hirose S; Kawahara K
    Kidney Int; 2003 Mar; 63(3):969-75. PubMed ID: 12631077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of inward rectifier potassium channel Kir7.1 in the basolateral membrane of distal nephron and collecting duct.
    Ookata K; Tojo A; Suzuki Y; Nakamura N; Kimura K; Wilcox CS; Hirose S
    J Am Soc Nephrol; 2000 Nov; 11(11):1987-1994. PubMed ID: 11053473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: implication for a functional coupling with Na+,K+-ATPase.
    Nakamura N; Suzuki Y; Sakuta H; Ookata K; Kawahara K; Hirose S
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):329-36. PubMed ID: 10455019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney.
    Derst C; Hirsch JR; Preisig-Müller R; Wischmeyer E; Karschin A; Döring F; Thomzig A; Veh RW; Schlatter E; Kummer W; Daut J
    Kidney Int; 2001 Jun; 59(6):2197-205. PubMed ID: 11380822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of the ROMK potassium channel to the apical membrane of distal nephron in rat kidney.
    Kohda Y; Ding W; Phan E; Housini I; Wang J; Star RA; Huang CL
    Kidney Int; 1998 Oct; 54(4):1214-23. PubMed ID: 9767537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NH4+ secretion in inner medullary collecting duct in potassium deprivation: role of colonic H+-K+-ATPase.
    Nakamura S; Amlal H; Galla JH; Soleimani M
    Kidney Int; 1999 Dec; 56(6):2160-7. PubMed ID: 10594791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental expression of ROMK in rat kidney.
    Zolotnitskaya A; Satlin LM
    Am J Physiol; 1999 Jun; 276(6):F825-36. PubMed ID: 10362771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the ROMK potassium channel in the kidney.
    Wald H
    Exp Nephrol; 1999; 7(3):201-6. PubMed ID: 10352359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt supplementation ameliorates developmental kidney defects in COX-2
    Slattery P; Frölich S; Goren I; Nüsing RM
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1044-F1055. PubMed ID: 28274925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of the rat kidney. IV. Whole kidney response to hyperkalemia.
    Weinstein AM
    Am J Physiol Renal Physiol; 2022 Feb; 322(2):F225-F244. PubMed ID: 35001663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclosporine stimulates Na+-K+-Cl- cotransport activity in cultured mouse medullary thick ascending limb cells.
    Wu MS; Yang CW; Bens M; Peng KC; Yu HM; Vandewalle A
    Kidney Int; 2000 Oct; 58(4):1652-63. PubMed ID: 11012899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and localization of the inwardly rectifying potassium channel Kir7.1 in native bovine retinal pigment epithelium.
    Yang D; Pan A; Swaminathan A; Kumar G; Hughes BA
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3178-85. PubMed ID: 12824269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins.
    Wagner CA; Loffing-Cueni D; Yan Q; Schulz N; Fakitsas P; Carrel M; Wang T; Verrey F; Geibel JP; Giebisch G; Hebert SC; Loffing J
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1373-80. PubMed ID: 18322017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of distal nephron K+ channels (ROMK) mRNA expression by aldosterone in rat kidney.
    Beesley AH; Hornby D; White SJ
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):629-34. PubMed ID: 9596787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation of ROMK expression in kidney cortex and medulla by aldosterone and potassium.
    Wald H; Garty H; Palmer LG; Popovtzer MM
    Am J Physiol; 1998 Aug; 275(2):F239-45. PubMed ID: 9691014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Activation of renal outer medullary potassium channel in the renal distal convoluted tubule by high potassium diet].
    Li X; Li PH; Xiao Y; Zhao K; Zhao HY; Lu CZ; Qi XJ; Gu RM
    Sheng Li Xue Bao; 2023 Apr; 75(2):188-196. PubMed ID: 37089093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K
    Zietara A; Palygin O; Levchenko V; Dissanayake LV; Klemens CA; Geurts A; Denton JS; Staruschenko A
    Am J Physiol Renal Physiol; 2023 Aug; 325(2):F177-F187. PubMed ID: 37318990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse model of type II Bartter's syndrome. I. Upregulation of thiazide-sensitive Na-Cl cotransport activity.
    Cantone A; Yang X; Yan Q; Giebisch G; Hebert SC; Wang T
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1366-72. PubMed ID: 18385266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Downregulation of the renal outer medullary K(+) channel ROMK by the AMP-activated protein kinase.
    Siraskar B; Huang DY; Pakladok T; Siraskar G; Sopjani M; Alesutan I; Kucherenko Y; Almilaji A; Devanathan V; Shumilina E; Föller M; Munoz C; Lang F
    Pflugers Arch; 2013 Feb; 465(2):233-45. PubMed ID: 23179379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion.
    Dong K; Yan Q; Lu M; Wan L; Hu H; Guo J; Boulpaep E; Wang W; Giebisch G; Hebert SC; Wang T
    J Biol Chem; 2016 Mar; 291(10):5259-69. PubMed ID: 26728465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.