These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
633 related articles for article (PubMed ID: 12632402)
1. Role of pericellular matrix in development of a mechanically functional neocartilage. Graff RD; Kelley SS; Lee GM Biotechnol Bioeng; 2003 May; 82(4):457-64. PubMed ID: 12632402 [TBL] [Abstract][Full Text] [Related]
2. Cell density alters matrix accumulation in two distinct fractions and the mechanical integrity of alginate-chondrocyte constructs. Williams GM; Klein TJ; Sah RL Acta Biomater; 2005 Nov; 1(6):625-33. PubMed ID: 16701843 [TBL] [Abstract][Full Text] [Related]
3. Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage. Kang SW; Yoo SP; Kim BS Biomed Mater Eng; 2007; 17(5):269-76. PubMed ID: 17851169 [TBL] [Abstract][Full Text] [Related]
4. Retention of the native chondrocyte pericellular matrix results in significantly improved matrix production. Larson CM; Kelley SS; Blackwood AD; Banes AJ; Lee GM Matrix Biol; 2002 Jun; 21(4):349-59. PubMed ID: 12128072 [TBL] [Abstract][Full Text] [Related]
5. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization. Guilak F; Alexopoulos LG; Haider MA; Ting-Beall HP; Setton LA Ann Biomed Eng; 2005 Oct; 33(10):1312-8. PubMed ID: 16240080 [TBL] [Abstract][Full Text] [Related]
6. In vivo cartilage tissue engineering using a cell-derived extracellular matrix scaffold. Jin CZ; Park SR; Choi BH; Park K; Min BH Artif Organs; 2007 Mar; 31(3):183-92. PubMed ID: 17343693 [TBL] [Abstract][Full Text] [Related]
7. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905 [TBL] [Abstract][Full Text] [Related]
8. Growth and integration of neocartilage with native cartilage in vitro. Zhang Z; McCaffery JM; Spencer RG; Francomano CA J Orthop Res; 2005 Mar; 23(2):433-9. PubMed ID: 15734259 [TBL] [Abstract][Full Text] [Related]
9. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics. Korhonen RK; Herzog W J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762 [TBL] [Abstract][Full Text] [Related]
11. Tissue engineering strategies for cartilage generation--micromass and three dimensional cultures using human chondrocytes and a continuous cell line. Tare RS; Howard D; Pound JC; Roach HI; Oreffo RO Biochem Biophys Res Commun; 2005 Jul; 333(2):609-21. PubMed ID: 15946652 [TBL] [Abstract][Full Text] [Related]
12. Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures. Gaissmaier C; Fritz J; Krackhardt T; Flesch I; Aicher WK; Ashammakhi N Biomaterials; 2005 May; 26(14):1953-60. PubMed ID: 15576169 [TBL] [Abstract][Full Text] [Related]
13. Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. Francioli SE; Candrian C; Martin K; Heberer M; Martin I; Barbero A J Biomed Mater Res A; 2010 Dec; 95(3):924-31. PubMed ID: 20845491 [TBL] [Abstract][Full Text] [Related]
14. Structure of pericellular matrix around agarose-embedded chondrocytes. Dimicco MA; Kisiday JD; Gong H; Grodzinsky AJ Osteoarthritis Cartilage; 2007 Oct; 15(10):1207-16. PubMed ID: 17524677 [TBL] [Abstract][Full Text] [Related]
15. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. Korhonen RK; Julkunen P; Wilson W; Herzog W J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490 [TBL] [Abstract][Full Text] [Related]
16. A mechano-chemical model for the passive swelling response of an isolated chondron under osmotic loading. Haider MA; Schugart RC; Setton LA; Guilak F Biomech Model Mechanobiol; 2006 Jun; 5(2-3):160-71. PubMed ID: 16520959 [TBL] [Abstract][Full Text] [Related]
17. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. Kisiday JD; Jin M; DiMicco MA; Kurz B; Grodzinsky AJ J Biomech; 2004 May; 37(5):595-604. PubMed ID: 15046988 [TBL] [Abstract][Full Text] [Related]
18. The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage. Waldman SD; Grynpas MD; Pilliar RM; Kandel RA J Orthop Res; 2003 Jan; 21(1):132-8. PubMed ID: 12507590 [TBL] [Abstract][Full Text] [Related]
19. The effect of TGF-beta1 and beta-estradiol on glycosaminoglycan and type II collagen distribution in articular chondrocyte cultures. Ab-Rahim S; Selvaratnam L; Kamarul T Cell Biol Int; 2008 Jul; 32(7):841-7. PubMed ID: 18479947 [TBL] [Abstract][Full Text] [Related]
20. Effect of sodium bicarbonate on extracellular pH, matrix accumulation, and morphology of cultured articular chondrocytes. Waldman SD; Couto DC; Omelon SJ; Kandel RA Tissue Eng; 2004; 10(11-12):1633-40. PubMed ID: 15684672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]